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Abstract Monosialotetrahexosylganglioside (GM1) is a
glycosphingolipid present in most cell membranes that
displays antioxidant and neuroprotective properties. It has
been recently described that GM1 induces pial vessel
vasodilation and increases NOx content in cerebral cortex,
which are fully prevented by the nitric oxide synthase
inhibitor NG-nitro-l-arginine methyl ester (L-NAME).
However, it is not known whether GM1 relaxes larger
vessels, as well as the mechanisms by which GM1 causes
vasorelaxation. In this study, we demonstrate that GM1 (10,
30, 100, 300 µM, 1 and 3 mM) induces vascular relaxation

determined by isometric tension studies in rat mesenteric
artery rings contracted with 1 µM phenylephrine. The
vasorelaxation induced by GM1 was abolished by endo-
thelium removal, by incubation with L-NAME (1 µM), and
partially inhibited by the blockade of potassium channels
by 1 mM tetraethylammonium, 10 µM glibenclamide, by
the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo
[4,3-alpha]quinoxalin-1-one (10 µM), and by 50 nM char-
ybdotoxin, a blocker of large and intermediate conductance
calcium-activated potassium channels. Moreover, GM1-
induced relaxation was not affected by apamin (50 nM), a
small conductance calcium-activated potassium channel
blocker. The results indicate that direct and indirect nitric
oxide pathways play a pivotal role in vasorelaxation induced
by GM1, which is mediated mainly by potassium channels
activation. We suggest that vasodilation may underlie some of
the biological effects of exogenous GM1 ganglioside.
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Abbreviations
ACh Acetylcholine
ANOVA Analysis of variance
cGMP Cyclic guanosine monophosphate
(+E) Endothelium intact
(−E) Endothelium denuded
eNOS Endothelial nitric oxide synthase
GLB Glibenclamide
GM1 Monosialotetrahexosylganglioside
KATP ATP-sensitive potassium channel
KCa Calcium-activated potassium channel
KV Voltage-sensitive potassium channel
L-NAME NG-nitro-l-arginine methyl ester
NO Nitric oxide
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NOS Nitric oxide synthase
ODQ 1H-[1,2,4]oxadiazolo[4,3-alpha]

quinoxalin-1-one
Phe Phenylephrine
sGC Guanylate cyclase soluble
TEA Tetraethylammonium
ChTX Charybdotoxin

Introduction

Gangliosides constitute a heterogeneous family of sialic
acid-containing glycosphingolipids that are components of
most cell membranes. They are particularly abundant in the
brain, where they represent the major lipid constituent of
the neuronal surface (Ledeen and Yu 1982; Tettamanti
2004). Administration of monosialotetrahexosylganglioside
(GM1) has been reported to protect the central nervous
system against various neurotoxic agents or conditions,
such as methylmalonic acid (Fighera et al. 2003),
pentylenetetrazol and glutaric acid exposure (Fighera et al.
2006), anoxia (Carolei et al. 1991; Tan et al. 1993) and
ischemia (Carolei et al. 1991; Kwak et al. 2005), lead-
induced neurotoxicity (She et al. 2009), Parkinson’s
(Schneider 1998) and Alzheimer’s diseases (Svennerholm
1994; Yanagisawa 2007), traumatic brain injury (Chen et al.
2003), and spinal cord injury (Geisler et al. 2001)
accompanied by an apparent absence of side effects in
animals. However, caution is warranted because of reports
of sporadic cases of Guillain–Barré syndrome after
ganglioside therapy (Yuki 1998; Govoni et al. 2003;
Komagamine and Yuki 2006).

Several neurochemical mechanisms have been proposed
for GM1-induced neuroprotection. It has been proposed
that GM1 interacts with neurotrophic factors and their
receptors in vivo and in situ (Duchemin et al. 1997, 1998,
2002; Rabin et al. 2002), activating mitogen-activated
protein kinase (Duchemin et al. 2002; Mo et al. 2005),
and PI3-kinase/Akt survival pathways (Duchemin et al.
2008). In addition, there are studies showing that GM1
presents antioxidant activity, both in situ and in vivo
(Avrova et al. 1994, 1998), and that its systemic adminis-
tration increases the striatal ascorbic acid content (Fighera
et al. 2003) and catalase activity in homogenates of the
cerebral cortex (Fighera et al. 2004). In fact, it has been
demonstrated that vasodilation underlies the GM1-induced
increase of catalase content in the brain and may be
responsible, at least in part, for the neuroprotection induced
by this ganglioside (Furian et al. 2007).

Nitric oxide (NO) is a short-lived gas, involved in
several cellular functions, particularly in the brain, and has
been recognized as a critical physiological mediator in the
regulation of the vascular tone (Moncada and Higgs 1991).

NO is synthesized from L-arginine by the members of the
nitric oxide synthase (NOS) family of proteins endothelial
(eNOS), neuronal, and inducible (Calabrese et al. 2007).
NO synthesized in endothelial cells diffuses to smooth
muscle cells where it activates soluble guanylate cyclase
(Dudzinski and Michel 2007), resulting in cyclic guanylate
monophosphate-dependent vasodilation (Furchgott and
Zawadzki 1980; Katsuki et al. 1977; Palmer et al. 1987),
an important process in the homeostasis of blood flow.
Cyclic GMP (cGMP) causes hyperpolarization by activat-
ing K+ channels, resulting in smooth muscle relaxation
(Jackson 1998). In addition, it has also been reported that
NO causes direct activation of K+ channels in smooth
muscle cells, causing vasodilation (Bolotina et al. 1994). In
summary, accumulating evidence suggests that NO regu-
lates blood vessel tonus through direct or indirect activation
of K+ channels, but the role of these channels on GM1-
induced vasodilation is unknown. Therefore, since (1)
GM1 increases NO content, (2) NG-nitro-l-arginine
methyl ester (L-NAME) prevents GM1-induced vasodilation
(Furian et al. 2008), and (3) guanylate cyclase soluble (sGC)
and K+ channels play a key role in the NO-mediated
regulation of blood vessel tonus, we hypothesized that these
downstream effectors of nitric oxide pathways (guanylate
cyclase and K+ channels) are involved in GM1-induced
vasorelaxation.

Experimental procedures

Animals

Adult male Wistar rats (250–280 g) maintained on a 12-h
light/dark cycle and with free access to tap water and standard
laboratory chow (Nuvital®, Brazil) were used. All experimen-
tal protocols (including statistical evaluation) were designed
aiming to keep the number of animals used to a minimum, as
well as their suffering. The investigation conforms to theGuide
for the Care and Use of Laboratory Animals published by the
US National Institutes of Health (NIH Publication No. 85-23,
revised 1996). The Institutional Ethics Committee of the
Federal University of Paraná approved all procedures adopted
in this study.

Drugs

Phenylephrine (Phe) hydrochloride, acetylcholine (ACh)
chloride, L-NAME, 1H-[1,2,4]oxadiazolo[4,3-alpha]
quinoxalin-1-one (ODQ), tetraethylammonium (TEA),
glibenclamide (GLB), apamin, and charybdotoxin (ChTX)
were purchased from Sigma (St. Louis, MO, USA). GLB was
dissolved in dimethyl sulfoxide. All other reagents were of the
highest grade, and solutions were prepared in fresh type I

488 Naunyn-Schmied Arch Pharmacol (2009) 380:487–495



ultrapure water. GM1 ganglioside was kindly donated by TRB
Pharma Laboratories, São Paulo, Brazil.

Preparation of rat mesenteric rings

The rat superior mesenteric artery was identified, and
mesenteric rings were prepared. Briefly, segments of the
mesenteric artery were excised, cleaned of adhering tissue,
cut into 2-mm-long rings, and transferred to a dish filled
with Krebs–Henseleit buffer (pH 7.4; composition in mM:
NaCl 115.3, KCl 4.9, CaCl2·2H2O 1.46, KH2PO4 1.2,
MgSO4 1.2, D-glucose 11.1, NaHCO3 25). The rings were
suspended in organ baths containing the physiological
solution bubbled with carbogen (5% CO2/95% O2) at
37°C. Isometric force transducers (Letica Scientific Instru-
ments, Barcelona, Spain) coupled to a MacLab® recording
system and its application program (Chart, v 3.3) from
ADInstruments (Castle Hill, Australia) were used to record
contractions and relaxations. Preparations were maintained at
a basal tension of 5 mN and allowed to stabilize for 1 h before
drugs were added, and during this time, the solution was
changed every 15min. In some experiments, endotheliumwas
removed by gently rubbing inside the vessel with a small wire.
The integrity of the endothelial layer was verified by the
ability of ACh (1 µM) to fully relax vessels precontracted with
Phe (1 µM; Rattmann et al. 2009).

Measurement of vascular relaxation

The ability of cumulative concentrations of GM1 (10, 30,
100, 300 nM, 1, 3, 10, 30, 100, 300 µM, 1 and 3 mM) to
relax endothelium-intact and endothelium-denuded mesen-
teric rings under sustained contraction elicited with Phe
(1 μM) was determined. Only intact endothelium mesen-
teric rings were used in the experiments designed to
evaluate the involvement of K+ channels, NOS, and sGC
in the vasorelaxing effect of GM1.

Mesenteric rings were subjected to a 15-min incubation
with L-NAME (1 µM; a nonselective nitric oxide synthase
inhibitor), or ODQ (10 µM; a soluble guanylate cyclase
inhibitor), or TEA (1 mM; a nonselective K+ channel
blocker), or GLB (10 µM; an ATP-sensitive K+ channel
blocker), or apamin (50 nM; a small conductance calcium-
activated K+ channel blocker), or ChTX (50 nM; a large
and intermediate-conductance calcium-activated K+ channel
blocker) and contracted with Phe (1 µM). After sustained
contraction elicited by Phe to the incubation medium, GM1
(10, 30, 100, 300 nM, 1, 3, 10, 30, 100, 300 µM, 1 and
3 mM) was added and the relaxation response measured, as
described in “Preparation of rat mesenteric rings” section.
EC50 values were calculated with GraphPad Prism 4.0
software, by using a nonlinear regression, which employ a
sigmoidal logarithmic function to estimate the plateau.

Statistical analysis

Variations in the tension of mesenteric rings induced by
GM1 were analyzed by a two-way analysis of variance,
with the concentrations treated as a within-subject factor.
Post hoc analysis was carried out by the Student–Newman–
Keuls test. A probability of P<0.05 was considered
significant. All data are reported as mean±standard error
of the mean (SEM).

Results

Figure 1 shows the effect of increasing cumulative concen-
trations of GM1 (10, 30, 100, 300 nM, 1, 3, 10, 30, 100,
300 µM, 1 and 3 mM) on the tonus of endothelium-intact
(+E) and in endothelium-denuded (−E) mesenteric rings
contracted with Phe (1 µM). GM1 induced vascular
relaxation only in endothelium-intact rings (P<0.001;
Fig. 1). The EC50 was 43 (22–88) µM. Post hoc analysis
revealed that the minimal effective relaxing concentration
of GM1 ganglioside was 10 µM. Figure 1c shows the
representative trace showing the contracting and relaxing
effects of Phe (1 µM) and ACh (1 µM), on mesenteric
rings, and the relaxing effect after the exposure to
cumulative concentrations of GM1.

Since there is evidence suggesting the involvement of
nitric oxide on GM1-induced vasodilation (Furian et al.
2008), we investigated whether L-NAME alters GM1-
induced vascular relaxation. L-NAME (1 µM) completely
inhibited GM1-induced relaxation in rat mesenteric artery
rings (P<0.001; Fig. 2a, b). This finding is in agreement
with previous studies which have reported an inhibitory
effect of L-NAME on GM1-induced vasodilation (Furian et
al. 2008). In addition, the guanylate cyclase inhibitor ODQ
(10 µM) attenuated the vasorelaxation induced by 3 mM
GM1, further supporting a role for NO and the coupled
guanylate cyclase system in the currently described effect
of GM1 (P<0.001; Fig. 2c, d).

It was well established that potassium channels are
involved in the control of smooth muscle contractility and
vascular tone. The incubation with nonselective potassium
channel blocker TEA (1 mM; P<0.001; Fig. 3a, b) reduced
GM1-induced vasorelaxation, suggesting the involvement
of potassium channels in this effect. In addition, ATP-sensitive
potassium channel blocker GLB (10 µM) completely
inhibited the vasorelaxation induced only by 3 mM of GM1
(P<0.001; Fig. 3c, d), providing additional experimental
evidence for the involvement of K+ channels in GM1-induced
vasodilation.

Furthermore, apamin (50 nM), a small conductance
calcium-activated potassium channel blocker, had no effect
on GM1-induced vasorelaxation (P=0.999; Fig. 4a, b),
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Fig. 1 GM1 induces
endothelium-dependent
relaxation in rat mesenteric
rings. a Relaxing effect of GM1
(10, 30, 100, 300 nM; 1, 3, 10,
30, 100, 300 µM; 1 and 3 mM)
in endothelium-intact
(indicated by +E) and
endothelium-denuded
(indicated by −E) mesenteric
rings. b Relaxing effect of GM1
(3 mM) in the presence and
absence of endothelium. Data
are mean±SEM, n=6. *P<0.05
when compared to the respective
control. c Representative trace
showing the contracting and
relaxing effects of Phe (1 µM)
and ACh (1 µM), respectively,
on mesenteric rings maintained
at a basal tension of 5 mN. After
60 min, mesenteric rings were
exposed to cumulative
concentrations of GM1.
Dots indicate the addition
of the drugs

Fig. 2 GM1 induces NO-/sGC-/
cGMP-dependent relaxation in
rat mesenteric rings. a The NOS
inhibitor L-NAME (1 μM)
prevents, and c the guanylate
cyclase inhibitor ODQ
attenuates GM1-induced
vasorelaxation. b, d The effect
of L-NAME and ODQ on the
vasorelaxant effects of GM1
(3 mM). Data are mean±SEM.
*P<0.05 when compared to
the respective control
(n=6–7 per group)
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Fig. 3 Potassium channel
blockers inhibit GM1-induced
mesenteric relaxation. Effect
of GM1 in the absence
(control curve) or presence
of a tetraethylammonium
(TEA; n=7), c glibenclamide
(GLB; n=6). b, d The effect of
GM1 3 mM in the presence an
absence of potassium channels
blockers. Data are mean±SEM.
*P<0.05 when compared to the
respective control

Fig. 4 Inhibition of GM1-
induced mesenteric relaxation
by conductance calcium-
activated potassium channel
blockers. Effect of GM1 in the
absence (control curve) or
presence of a apamin (n=5) and
c charybdotoxin (ChTX; n=5).
b, d The effect of GM1 3 mM in
the presence and absence of
apamin and ChTX. Data
are mean±SEM. *P<0.05
when compared to the
respective control
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whereas ChTX (50 nM), a blocker of large and intermediate
conductance calcium-activated potassium channels, induced a
concentration-related right shift in cumulative concentration–
effect curve for GM1 (P<0.001; Fig. 4c, d) increasing the
EC50 from 114 (86–151) µM to 1 mM (668 µM–1 mM).

We also measured tensions in controls after the incubation
with enzyme inhibitors and channel blockers in the presence
of Phe. Statistical analyses (paired T test) revealed that
L-NAME (3.9 to 5.5 mN), ODQ (2.6 to 4.1 mN), and apamin
(3.6 to 4 mN) significantly increased Phe-induced contraction.
On the other hand, TEA, ChTX, and GLB did not change
Phe-induced contraction (data not shown).

Discussion

In this report, we demonstrate that GM1 induces
endothelium-dependent vasorelaxation in rat superior
mesenteric arteries. In addition, we gathered pharmacological
evidence supporting the involvement of the NO/sGC/cGMP
pathway and of KCa and KATP channels in GM1-induced
vasorelaxation.

There is some evidence suggesting that GM1 causes
vasodilation (Tanaka et al. 1986; Svennerholm et al. 2002).
Accordingly, it has been shown that GM1 (30 mg/kg, i.v.)
significantly restores local cerebral blood flow and glucose
metabolism in animals subjected to arterial occlusion
(Tanaka et al. 1986) and improves neurological status
and cerebral blood flow in Alzheimer’s disease patients
(Svennerholm et al. 2002), suggesting that vasodilation
and better perfusion may underlie some pharmacological
effects of GM1 administration. In addition, we have
recently demonstrated that GM1 increases catalase content
in brain samples by causing vasodilation (Furian et al.
2007), providing a possible convergent mechanism for the
neuroprotective action of GM1 (Furian et al. 2007).
Furthermore, a role for NO in GM1-induced vasodilation
has been proposed, since L-NAME prevents GM1-induced
NOx increase in cerebral slices and fully inhibits GM1-
induced vasodilation in pial vessels (Furian et al. 2008).
Interestingly, the concentration of GM1 that caused a 60%
relaxation of the mesenteric artery in the current study
(100 µM; Fig. 1) increased by 50% NOx content in slices of
cerebral cortex in a previous study (Furian et al. 2008).

In order to determine whether the vasorelaxing effect of
GM1 involved NOS activation, mesenteric rings were
incubated with the nonselective NOS inhibitor L-NAME
(1 μM) and then exposed to cumulative concentrations of
GM1. L-NAME fully prevented the vascular relaxation
induced by GM1, suggesting that NOS plays a crucial role
in the vascular effects of GM1, as previously suggested for
pial vessels. In addition, GM1-induced relaxation depended
on the endothelium integrity, reinforcing the role of

endothelium-derived relaxing factors, particularly nitric
oxide, in GM1-induced vasodilation.

Endothelial nitric oxide synthase is a dually acylated
peripheral membrane protein that targets to the Golgi region
and caveolae of endothelial cells and can coprecipitate with
caveolin-1, the structural protein of caveolae (Garcia-
Cardena et al. 1997). This protein, in some instances,
regulates the activity of other proteins targeted to caveolae,
as potassium channels and calcium regulatory proteins
(Saliez et al. 2008). These elements play an important
functional role in the modulation of cell signal transduction
pathways involved in eNOS activity. It has been demon-
strated that caveolin-1 KO mice have increased NO-
mediated relaxation in superior mesenteric arteries and that
increased vascular flow (Rizzo et al. 1998) promotes eNOS
dissociation from caveolin and association with calmodulin
to activate the enzyme (Saliez et al. 2008). Sphingolipids
are the major components of caveolae structure. Therefore,
one might suggest that GM1, a sphingolipid, can promote
eNOS dissociation from caveolin, by binding to CaM-
binding domain of eNOS, and determine the membrane
association of the enzyme. However, this discussion is
speculative in nature, and further studies are necessary to
elucidate this point.

It is well known that NO-induced artery relaxation is
predominantly mediated by the sequential activation of
soluble guanylate cyclase, accumulation of cGMP (Moncada
and Higgs 1991), cGMP-dependent protein kinase activation,
and subsequent K+ channels opening (Alioua et al. 1998;
Robertson et al. 1993). Accordingly, in order to evaluate the
participation of the NO/sGC/cGMP pathway in GM1-
induced vasodilation, we incubated the preparations with
ODQ, an inhibitor of the NO-sensitive guanylate cyclase
(Garthwaite et al. 1995). GM1-induced relaxation was
partially blocked by ODQ suggesting that the relaxing
response elicited by GM1 involves the L-arginine/NO/sGC/
cGMP pathway. The partial effect of ODQ on GM1-induced
vascular relaxation markedly contrasted with the complete
prevention of GM1-induced relaxation by L-NAME. Such a
discrepancy could be explained by a direct stimulation of
calcium-activated K+ channels by NO, without the partici-
pation of cGMP (Bolotina et al. 1994), suggesting that
cGMP-independent pathways also play a role in the relaxing
effect induced by GM1.

Potassium channels are the dominant ion conductive
pathways in vascular muscle cells, and their activities
contribute to the regulation of muscle contractility and
vascular tone (Jackson 2000; Nelson and Quayle 1995).
Moreover, it has been reported that endothelium-derived
relaxing factors, such as NO, induce vasorelaxation by
activating K+ channels and consequently closing voltage-
dependent calcium channels in the vascular smooth muscle
(Nelson and Quayle 1995). Smooth muscle cells have been
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shown to express at least four different classes of potassium
channels: voltage-activated K+ (KV), ATP-sensitive K+

(KATP), Ca
2+-activated K+ (KCa), and inward rectifier K+

(KIR) channels (Jackson 2005). Therefore, in order to
identify the K+ channels involved in the vasorelaxation
induced by GM1, we incubated mesenteric ring prepara-
tions with K+ channels blockers TEA, GLB, ChTX, and
apamin. The findings that TEA and GLB prevent GM1-
induced vasorelaxation suggest that ATP-sensitive potassium
channels are important for its relaxing activity (Fig. 3). In
addition, the relaxation induced by GM1 was right-shifted by
ChTX, a large and intermediate conductance calcium
activated potassium channel blocker (Fig. 4c), but not by
apamin, a small conductance calcium-activated potassium
channel blocker (Fig. 4a). These findings indicate that while
large calcium-activated potassium channels are involved in
the vascular relaxation induced by GM1, the involvement of
small conductance calcium-activated potassium channels is
unlikely. These data are in agreement with the view that large
conductance channels (BKCa) are the main KCa channels in
microvascular smooth muscle cells (Jackson 2005). Interest-
ingly, there is evidence suggesting that NO activates BKCa

either directly or indirectly, by activating protein kinases
(Archer et al. 1994).

Furthermore, it is worth to pointing out that drug-
induced vasorelaxation depends on the tonus of the artery
prior to drug exposure. Since inhibition of the NO pathway
with NOS or sGC inhibitors and by blockers of KCa

channels could increase the basal tonus of the mesenteric
ring, eliciting a stronger contraction with Phe, a functional
antagonism may have come into play in these experiments.
Therefore, we cannot rule out partial functional antagonism
as a cause for the currently described antagonism of GM1-
induced vasorelaxation by 1 μM L-NAME, 10 μM ODQ,
and 50 nM apamin, even considering the widespread use of
these agents at concentrations higher (i.e., 40–300 µM for
L-NAME, 0.1–10 µM for ODQ, 100 nM for apamin) than
those used in the current study to pharmacologically
demonstrate the involvement of the NOS pathway and
of KCa channels in the vasodilating effect of several
compounds (Sampson et al. 2001; Capasso et al. 2008;
Tirapelli et al. 2008).

Regarding the possible clinical significance of the
presently reported vasodilator effect of GM1, one must be
aware that the concentrations of GM1 required for cause
total relaxation are in the low millimolar range, which could
be quite high to reach in the body fluids. However, it
should be noted that intermediate concentrations of GM1,
from 10 to 100 μM, were able to cause 30–60% of
vasorelaxation in the present study. In this regard, a
previous clinical study by Svennerholm et al. (2002)
revealed that treatment of five Alzheimer’s disease patients
with GM1 (30 mg/24 h; i.c.v.) increased CSF GM1

concentrations to 40–60 μM, which is close to the range
of GM1 concentrations required to cause 30–60% of
vasorelaxation in mesenteric rings. In light of these results,
we think that the present data may have clinical signifi-
cance, depending basically on the level of vasorelaxation
required to reach therapeutic effects in a given condition. In
light of this premise, it is remarkable that a 42% increase in
middle cerebral artery diameter by simvastatin treatment
significantly ameliorates cerebral vasospasm and reduces
neurological deficits resulting from subarachnoid hemor-
rhage in mice (McGirt et al. 2002).

In conclusion, our results demonstrate that GM1-induced
vasorelaxation in mesenteric rings is endothelium depen-
dent and mediated by the activation of the NO/sGC/cGMP
pathway and KCa and KATP channels. Figure 5 shows an
integrative view of the mechanisms which underlie the
currently described vasorelaxing effect of GM1. While the
mechanisms by which GM1 facilitates NO production are
still unknown, our findings constitute strong experimental
evidence supporting a role for NO and K+ channels in

Fig. 5 Representation of the proposed pathways activated by GM1 to
induce vasorelaxation in mesenteric artery rings. GM1 increases NO
levels, which activate sGC, increasing cGMP levels. cGMP activates
KCa, KV, and KATP channels, promoting vasorelaxation. In addition,
NO may directly activate KCa, promoting vasorelaxation. The vaso-
relaxing effect of GM1 disappeared when the endothelium was not
intact and fully prevented in the presence of the NOS inhibitor
L-NAME. The sGC inhibitor, ODQ, partially prevented GM1-induced
relaxation. Potassium channel blockers, namely TEA and GLB, also
prevented the effect of GM1, while the KCa blocker, ChTX, induced a
concentration related right shift in cumulative concentration–effect
curve for GM1. Blockers/inhibitors are presented in gray and bold and
enzymes in italics. Dotted and solid lines represent activation of
partially and fully known pathways, respectively. L-NAME NG-nitro-l-
arginine methyl ester, L-arg L-arginine, L-cit L-citrulline, eNOS
endothelial nitric oxide synthase, sGC guanylate cyclase soluble,
cGMP cyclic guanosine monophosphate, ODQ 1H-[1,2,4]oxadiazolo
[4,3-alpha]quinoxalin-1-one, KCa calcium-activated potassium
channel, TEA tetraethylammonium, ChTX charybdotoxin, KATP ATP-
sensitive potassium channel, GLB glibenclamide, KV voltage-sensitive
potassium channel
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GM1-induced vasodilation in mesenteric artery rings. As a
consequence, this study significantly contributes for the
understanding of pharmacological effects of exogenous
GM1, a compound that could improve the outcome in
several experimental models of disorders associated with
perfusional deficits, such as traumatic brain injury (Chen et
al. 2003), anoxia (Carolei et al. 1991; Tan et al. 1993),
ischemia (Carolei et al. 1991; Kwak et al. 2005), and
Parkinson’s (Schneider 1998) and Alzheimer’s diseases
(Svennerholm 1994; Svennerholm et al. 2002; Yanagisawa
2007). On the other hand, a clinical trial with GM1 for
ischemic stroke did not show enough evidence to conclude
that gangliosides are beneficial in this situation (Candelise
and Ciccone 2002). However, factors such as time for
initiating treatment, doses, and patient sample size could
underestimate potential benefic effects of neuroprotective
agents in general (Wahlgren and Ahmed, 2004), and
therefore, more clinical studies are needed to further
evaluate the value of GM1 treatment for disorders associated
with perfusional deficits.
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