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The outline

∙ Ecological problem: monitoring insects movement

∙ Mathematical problem: the initial-boundary-value problem
(IBVP) for the diffusion equation

∙ The 1− D case: finite difference discretization of the
second order IBVP

∙ The 2− D case: finite difference method for the diffusion
IBVP
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Ecological problem:

monitoring insects movement
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Problem statement

∙ Monitoring of pest insects is an important part of the
integrated pest management.

∙ Interpretation of trap counts remains a challenging
problem.

∙ How is the number of insects caught over a fixed time
related to the insects population density?

∙ A mean-field mathematical model of insect trapping is
based on the diffusion equation.
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A single trap

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



The road map

∙ Learn how to solve the diffusion equation in a 2− D
domain.

∙ Learn how to reconstruct trap counts from the solution
u(x , y) to the diffusion equation.

∙ Compare the trap counts obtained from the solution u(x , y)
to the diffusion equation with field data.

∙ Vary the parameters in the diffusion equation to reach
good agreement between numerical data and field data.
That will give you the density u(x , y) as required.
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Skills required

∙ Solve the diffusion equation in a 2− D domain:
approximation of the spatial terms – lecture 3
approximation of the temporal term – lecture 2
approximation of the boundary conditions – lecture 3

∙ Reconstruct trap counts from the solution u(x , y) to the
diffusion equation:

approximation of the flux – interpolation, lecture 1
calculation of trap counts – numerical integration, lecture 1

∙ Error analysis, validation, verification – lectures 1, 2, 3
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One-dimensional problem: mathematical model

∂u(x , t)
∂t

= D
∂2u(x , t)
∂x2 ,

where u(x , y) is the insects population density, D is the
diffusion coefficient.

The initial condition: u(x ,0) = U0, for 0 < x < L.

The boundary conditions:

u(0, t) = 0 ,
∂u(L, t)
∂x

= 0.

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



Why is a 1− D model important?

∙ It is easy to understand basic concepts behind the
numerical method in the 1− D case.

∙ It is easy to design a computer program for a 1− D model.

∙ The exact solution is available: we can validate and verify
the program and results.

∙ Predictions for a 2− D solution can be made based on
1− D results.
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One-dimensional problem: trap counts

∙ The solution u(x , t) is given by the following infinite series:

u(x , t) =
4U0

�

∞∑

k=0

1
(2k + 1)

sin
(

(2k + 1)�x
2L

)
exp

(
−(2k + 1)2�2Dt

4L2

)
.

∙ The corresponding trap count over time t is

ΔU(t) =

∫ t

0
j(�)d� ,

where j(t) is the absolute value of the population density
flux through the trap boundary,

j(t) = D
∣∣∣∣
∂u(x , t)
∂x

∣∣∣∣
x=0

.

j(t) =
2DU0

L

∞∑

k=0

exp
(
−(2k + 1)2�2Dt

4L2

)
.
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One-dimensional problem: trap counts

ΔU(t) =
8LU0

�2

∞∑

k=0

1
(2k + 1)2

[
1− exp

(
−(2k + 1)2�2Dt

4L2

)]
.

∙ In the large-time limit ΔU(t)→ LU0, i.e. all insects are
trapped.
∙ The trap count can be approximated as

ΔU(t) ≈ 2U0√
�

√
Dt ,

which shows a very good accuracy when either time t is
sufficiently small or the domain length L is sufficiently
large, or both.
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Finite difference (FD) discretization

of a one-dimensional problem
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FD discretization of ODE

∙ The linear second-order boundary value problem:

y ′′ = p(x)y ′ + q(x)y + r(x), a ≤ x ≤ b,

y(a) = �, y(b) = �

∙ The underlying idea for an FD method:

– replace the first and second derivatives with their
difference approximations

– hence, reduce the boundary value problem to a system of
algebraic equations
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Forward difference approximation of the first derivative

∙ The Taylor series expansion of y(x) about the point x

y(x + h) = y(x) + h
dy(x)

dx
+

h2

2
d2y(�)

dx2

dy(x)

dx
=

y(x + h)− y(x)

h
+

h
2

d2y(�)

dx2

dy(x)

dx
=

y(x + h)− y(x)

h
+ O(h)

dy(x)

dx
≈ y(x + h)− y(x)

h
forward difference

∙ The error is

e = ∣dy(x)

dx
− y(x + h)− y(x)

h
∣ = O(h), e→ 0, as h→ 0.

the first order approximation
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Central difference approximation of the first derivative

∙ The Taylor series expansion of y(x) about the point x

y(x + h) = y(x) + h
dy(x)

dx
+

h2

2
d2y(x)

dx2 +
h3

6
d3y(�)

dx3

y(x − h) = y(x)− h
dy(x)

dx
+

h2

2
d2y(x)

dx2 − h3

6
d3y(�)

dx3

dy(x)

dx
=

y(x + h)− y(x − h)

2h
+

h2

6
[−d3y(�)

dx3 +
d3y(�)

dx3 ]

dy(x)

dx
=

y(x + h)− y(x − h)

2h
+ O(h2)

dy(x)

dx
≈ y(x + h)− y(x − h)

2h
central difference

∙ The error is

e = ∣dy(x)

dx
− y(x + h)− y(x − h)

2h
∣ = O(h2), e→ 0, as h→ 0.

the second order approximation
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A sketch of FD approximation of the first derivative

the forward (backward) difference the central difference

One-Sided Difference Central Difference

Figure 11.1. Finite Difference Approximations.

back to Newton. The resulting finite difference numerical methods for solving differential
equations have extremely broad applicability, and can, with proper care, be adapted to
most problems that arise in mathematics and its many applications.

The simplest finite difference approximation is the ordinary difference quotient

u(x+ h)− u(x)

h
≈ u′(x), (11.1)

used to approximate the first derivative of the function u(x). Indeed, if u is differentiable
at x, then u′(x) is, by definition, the limit, as h → 0 of the finite difference quotients.
Throughout our discussion, h, the step size, which may be either positive or negative, is
assumed to be small: | h | ≪ 1. When h > 0, (11.1) is referred to as a forward difference,
while h < 0 gives a backward difference. Geometrically, the difference quotient equals the
slope of the secant line through the two points

(
x, u(x)

)
and

(
x+ h, u(x+ h)

)
on the

graph of the function. For small h, this should be a reasonably good approximation to the
slope of the tangent line, u′(x), as illustrated in the first picture in Figure 11.1.

How close an approximation is the difference quotient? To answer this question, we
assume that u(x) is at least twice continuously differentiable, and examine the first order
Taylor expansion

u(x+ h) = u(x) + u′(x) h+ 1
2
u′′(ξ) h2. (11.2)

We have used the Cauchy form for the remainder term, [2], in which ξ represents some
point lying between x and x + h. The error or difference between the finite difference
formula and the derivative being approximated is given by

u(x+ h)− u(x)

h
− u′(x) = 1

2 u
′′(ξ) h. (11.3)

Since the error is proportional to h, we say that the finite difference quotient (11.3) is a
first order approximation. When the precise formula for the error is not so important, we
will write

u′(x) =
u(x+ h)− u(x)

h
+O(h). (11.4)

The “big Oh” notation O(h) refers to a term that is proportional to h, or, more rigorously,
bounded by a constant multiple of h as h → 0.

5/18/08 189 c© 2008 Peter J. Olver
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FD approximation of higher order derivatives

∙ Let g(x) = y ′(x)

d2y(x)

dx2 =
dg(x)

dx
≈ g(x + h/2)− g(x − h/2)

h
g(x + h/2) =

dy(x + h/2)

dx
≈ y(x + h)− y(x)

h

g(x − h/2) =
dy(x − h/2)

dx
≈ y(x)− y(x − h)

h

d2y(x)

dx2 ≈ y(x + h)− 2y(x) + y(x − h)

h2

∙ The error is

e = ∣d
2y(x)

dx2 − y(x + h)− 2y(x) + y(x − h)

h2 ∣ = O(h2)

the second order approximation
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Numerical solution of the BVP by finite differences:
example

y ′′ = 2, y(0) = 1, y(1) = 3

(y ′′ = p(x)y ′ + q(x)y + r(x), a ≤ x ≤ b, y(a) = �, y(b) = �)

Y (x) = x2 + x + 1 – the exact solution

∙ A uniform computational grid G in the domain x ∈ [0,1]:
x1 = 0, xi+1 = xi + h, i = 1, . . . ,N, where h = 1/N is the
grid step size, and N is the number of grid subintervals

∙ FD discretization at grid points:
y(xi+1)− 2y(xi) + y(xi−1)

h2 = 2, i = 2, . . . ,N – the equation

y(x1) = 1, y(xN+1) = 3 – the boundary conditions
ei = ∣Y (xi)− y(xi)∣ – the error at the point xi
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Example of numerical solution
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Figure 11: Graph (a) shows the exact solution for equation (25) along with
numerical solutions for the equation using the finite difference method with
N = 2, 4, 8, 16 subintervals. Graph (b) shows the corresponding error asso-
ciated with numerical solution and exact solution. The error is calculated
using the error norm.
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FD discretization of boundary conditions

y ′′ = p(x)y ′ + q(x)y + r(x), a ≤ x ≤ b,
dy(a)

dx
= �, y(b) = �

∙ FD discretization at grid points:

y(xi+1)− 2y(xi) + y(xi−1)

h2 = p(xi)
y(xi+1)− y(xi−1)

2h
+

q(xi)y(xi) + r(xi), i = 2, . . . ,N

y(x2)− y(x1)

h
= �, – the first order! y(xN+1) = �

∙ We need the second order approximation of the boundary
condition!
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FD discretization of boundary conditions

∙
y(x2)− y(x0)

h
= �? but x0 does not exist!

∙ The equation at the point x1:

y2 − 2y1 + y0

h2 = p1
y2 − y0

2h
+ q1y1 + r1,

where gi ≡ g(xi)

∙
dy(x1)

dx
≈ 2y2 − (2 + q1h2)y1 − r1h2

2h + p1h2 = �

second order approximation
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Numerical solution

of a 1− D diffusion equation
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The one-dimensional problem

∂u(x , t)
∂t

= D
∂2u(x , t)
∂x2 ,

where u(x , y) is the insects population density, D is the
diffusion coefficient.

The initial condition: u(x ,0) = U0, for 0 < x < L.

The boundary conditions:

u(0, t) = 0 ,
∂u(L, t)
∂x

= 0.
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FD discretization of the diffusion equation

Figure 13: The grid onto which the continuous u(x, t) is discretized

the spatial variable x and the time dependant variable t, the discretization
must replace the continuous system of coordinates (x, t) with a discrete grid
(i, n) = (i∆x, n∆t) and the continuous function u(x, t) by a discrete function
uni = u(i∆x, n∆t). Introducing a uniform computational grid in the domain
x ∈ [0, L], we have x1 = 0, xi+1 = xi + h, i = 1, ..., N where h = L/N is
the grid step size and N is the number of grid subintervals. This process is
illustrated by Figure (13) which shows the grid onto which u(x, t) is to be
discretized.

To discretize the diffusion equation the first order time derviative ut(x, t)
is replaced by a forward finite difference in time

∂u

∂t
≈ un+1

i − uni
∆t

. (51)

This discretizes the time derivative by calculating the difference between time
layers tn+1 and tn for n = 1, ..., T . The second-order space derivative uxx(x, t)
is replaced by a central difference in space

∂2u

∂x2
≈ uni+1 − uni + uni−1

(∆x)2
. (52)

These can be combined to give the finite difference approximation to the
diffusion equation

un+1
i − uni

∆t
= D

uni+1 − 2uni + uni−1
h2

. (53)

Rearranging gives an expression for un+1
i which gives the numerical value of

u at each spatial grid point in the discretization at the time layer t = tn+1,

32

∙ a uniform grid in the domain x ∈ [0,L], h = L/N
∙ a uniform grid in the domain t ∈ [0,T ], Δt = T/M
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FD discretization of the diffusion equation

A finite difference discretization scheme:

1
�

(un+1
i − un

i ) = Λ[un
i ],

where the discrete operator Λ is

Λ[vi ] =
D
h2 (vi+1 − 2vi + vi−1).

Boundary conditions

un+1
1 = 0, for x = 0,

un+1
N+1 = un

N+1 +
2�D
h2 (un

N − un
N+1), for x = L.

Initial condition

u0
i = U0, i = 2, . . . ,N.
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Importance of accurate BC approximation

Nodes per unit length 3 5 9 11 21

1st order (×10−4) 359 183 92.4 74.1 37.2

2nd order (×10−4) 0.949 0.288 0.110 0.194 0.100

Maximum relative error obtained in the 1− D system for 1st
order and 2nd order approximation of the boundary condition at
the external boundary.
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Stability of the FD scheme

1
�

(un+1
i − un

i ) = Λ[�un+1
i + (1− �)un

i ],

Λ[vi ] =
D
h2 (vi+1 − 2vi + vi−1).

The weight parameter � defines a type of the scheme:
The weight � = 1 – an implicit (therefore unconditionally
stable) scheme.
The weight � = 0 – an explicit scheme.
Stability condition (CFL):

D�
h2 ≤

1
2
.
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Examples of instability
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(a) Slight instability, dt=0.02001
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(b) Large instability, dt=0.025

Figure 18: Unstable numerical solutions to the diffusion equation with con-
ditions from section (3.4.3) and parameters D = 1, L = 20 and N = 100. In
both cases the stability condition requires that ∆t ≤ 0.02. Graph (a) shows
instability with ∆t only slightly above the condition, but it still resembles
a stable solution. At dt = 0.025 in graph (b) the solution’s stability has
completely broken down and the solution is widely different to any stable
solution.
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Implicit and semi-implicit FD schemes

∙ Fully implicit scheme (backward difference)

1
�

(un+1
i − un

i ) = Λ[un+1
i ] =

D
h2 (un+1

i+1 − 2un+1
i + un+1

i−1 )

∙ Unconditionally stable scheme

∙ Higher computational cost (matrix inversion at each time
step)

∙ The order of approximation is O(� + h2)
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Implicit and semi-implicit FD schemes

∙ Crank-Nicolson scheme

1
�

(un+1
i − un

i ) = Λ[
1
2

un+1
i +

1
2

un+1
i ],

Λ[vi ] =
D
h2 (vi+1 − 2vi + vi−1).

∙ Unconditionally stable scheme

∙ Higher computational cost (matrix inversion at each time
step)

∙ The order of approximation is O(�2 + h2)
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Calculation of trap counts

∙ The trap count over time t is

ΔU(t) =

∫ t

0
j(�)d� ,

where j(t) is the absolute value of the population density
flux through the trap boundary,

j(t) = D
∣∣∣∣
∂u(x , t)
∂x

∣∣∣∣
x=0

.

First order approximation (for any fixed t = tn):

du(xi)

dx
=

ui+1 − ui

h
+ O(h).
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Calculation of trap counts: second order
approximation

j(x) ≈ D
∣∣∣∣
du(x)

dx

∣∣∣∣

u(x) ≈ pk (x) = a0 + a1x + a2x2

j(0) ≈ D∣a1∣
We have

p(0) = a0 = u1, p(h) = a0 + a1h + a2h2 = u2,

p(2h) = a0 + 2a1h + 4a2h2 = u3

As u1 = 0, the approximation of the flux is given by

j(0) ≈ D
2h
∣4u2 − u3∣.
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Calculation of trap counts

j(0) ≈ D
2h
∣4u2 − u3∣.

∙ The total number of insects ΔUn,n+1 crossing the trap
boundary between time tn and tn+1 is obtained as
ΔUn,n+1 = j(0)� (the midpoint rule of integration).

∙ The cumulative trap count ΔU(tn+1) = ΔUn+1 at time tn+1
is then computed by adding this value to that obtained at
the previous time tn:

ΔUn+1 = ΔUn + ΔUn,n+1.
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Validation of computations
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Figure 1: (a) Spatial convergence of the numerical solution on a sequence of uniformly refined
spatial grids. (b) Trap counts obtained by (10) on a sequence of refined grids with the grid step
size h (see inset key) in comparison with the truncated exact solution (30). (c) The trap count error
(29) as a function of time. In all cases (a-c), the parameters are L = 49.5, D = 1.0, τ = 1/1600,
U0 = 10.
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(29) as a function of time. In all cases (a-c), the parameters are L = 49.5, D = 1.0, τ = 1/1600,
U0 = 10.
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Validation of computations
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Figure 2: (a) Spatial convergence test. The error is computed as a difference between the solution (32) and
the integral of the truncated density function on a sequence of uniformly refined spatial grids. (b) Plots of
trap counts obtained using numerical integration on increasingly fine grids (see inset key) in comparison with
the exact solution obtained as the integral of the truncated exact density function. (c) Relative differences
between the numerical solution and the exact solution plotted against time. In all cases (a-c), the parameters
are the same as in Fig. 1.
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Finite difference discretization

of a 2− D diffusion equation
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The 2-D diffusion model

Equation:
∂u
∂t

= D
(
∂2u
∂x2 +

∂2u
∂y2

)
.

Boundary condition at the trap boundary:

u(x , y , t) = 0 for any (x , y) ∈ ∂S.

Boundary condition at the external boundary:

∂u(x , y , t)
∂n

= 0 at ∂Ω.

Initial condition:

u(x , y , t) = U0 > 0 for any (x , y) ∈ Ωs.
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2-D computational grid

∙ a uniform grid in the domain x ∈ [−L,L], h = L/Nm
∙ a uniform grid in the domain y ∈ [−L,L], h = L/Nm
∙ a uniform grid in the domain t ∈ [0,T ], Δt = T/M

(L,L)

(L,-L)(0,-L)

(-L,0)

(-L,-L)

(-L,L)

i,j-1

i,j+1

i,j
i+1,ji-1,j
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FD discretization of the 2− D problem

Let un
ij ≡ u(xi , yj , tn) and un+1

ij ≡ u(xi , yj , tn+1).

FD discretization of the equation:

1
�

(un+1
ij − un

ij ) = (Λ1 + Λ2)[un
ij ],

where
Λ1[vij ] =

D
h2 (vi+1,j − 2vij + vi−1,j),

Λ2[vij ] =
D
h2 (vi,j+1 − 2vij + vi,j−1).
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FD discretization of the 2-D problem

The boundary condition at the trap boundary:

un+1
ij = 0,

for i = iI , j = jI , . . . , jII (the left boundary of the trap),
i = iII , j = jI , . . . , jII (the right boundary of the trap),

j = jI , i = iI , . . . , iII (the bottom boundary of the trap),
j = jII , i = iI , . . . , iII (the top boundary of the trap)

The boundary condition at the external boundary x = 0:

h2

�D

(
un+1

1,j − un
1,j

)
+ 4un

1,j+1 − 2un
2,j − un

1,j+1 − un
1,j−1 = 0,

for j = 2, . . . ,2Nm (similar b.c. at the rest of the external boundary)

The initial condition:

u0
ij = U0, i = 1,2, . . . ,2Nm + 1, j = 1,2, . . . ,2Nm + 1.
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2-D challenges

∙ Increasing complexity of programming

∙ Time consuming computation: 1 node = 1 second→ N
seconds (a 1− D problem) vs. N ∗ N seconds (a 2− D
problem)

∙ Geometry challenges:

▶ discretization at the corners;

▶ a curvilinear boundary is a realistic option (unstructured
grids, finite element discretization);

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



References

∙ G. Gordon, G.D.Smith. Numerical Solution of Partial
Differential Equations: Finite Difference Methods. Oxford
University Press, 1985.

∙ K.W.Morton, D.F.Mayers. Numerical Solution of Partial
Differential Equations. An Introduction. Cambridge,
Cambridge University Press, 1994.

∙ D. Bearup, N.B.Petrovskaya, S.V.Petrovskii. Some
Analytical and Numerical Approaches to Understanding
Trap Counts Resulting from Pest Insect Immigration.
(submitted to Mathematical Biosciences)

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



More examples of PDEs in ecology: reaction-diffusion
equations

∂u
∂t

= D
(
∂2u
∂x2 +

∂2u
∂y2

)
+ f (u, x , y).

Reaction-diffusion equations describe the following
ecological phenomena (see the ref. below)
∙ the existence of a minimal patch size necessary to sustain

a population
∙ the propagation of wavefronts corresponding to biological

invasions
∙ the formation of spatial patterns in the distributions of

populations in homogeneous environments
C.Cosner. Reaction-diffusion equations and Ecological
Modeling. in Tutorials in Mathematical Biosciences IV:
Evolution and Ecology, Avner Friedman (ed.), Springer,
2008
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Course overview:

anything else?
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Topics for self-study: numerical linear algebra

∙ Matrix computations

∙ Solving linear systems of algebraic equations

∙ Finding eigenvalues
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