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The outline

e Ecological problem: monitoring insects movement

e Mathematical problem: the initial-boundary-value problem
(IBVP) for the diffusion equation

e The 1 — D case: finite difference discretization of the
second order IBVP

e The 2 — D case: finite difference method for the diffusion
IBVP
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Ecological problem:

monitoring insects movement
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Problem statement

Monitoring of pest insects is an important part of the
integrated pest management.

Interpretation of trap counts remains a challenging
problem.

How is the number of insects caught over a fixed time
related to the insects population density?

A mean-field mathematical model of insect trapping is
based on the diffusion equation.
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A single trap
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The road map

e Learn how to solve the diffusion equationina2 — D
domain.

e Learn how to reconstruct trap counts from the solution
u(x, y) to the diffusion equation.

e Compare the trap counts obtained from the solution u(x, y)
to the diffusion equation with field data.

e Vary the parameters in the diffusion equation to reach
good agreement between numerical data and field data.
That will give you the density u(x, y) as required.
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Skills required

e Solve the diffusion equation in a 2 — D domain:

approximation of the spatial terms — lecture 3
approximation of the temporal term — lecture 2
approximation of the boundary conditions — lecture 3

e Reconstruct trap counts from the solution u(x, y) to the
diffusion equation:

approximation of the flux — interpolation, lecture 1
calculation of trap counts — numerical integration, lecture 1

e Error analysis, validation, verification — lectures 1, 2, 3

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



One-dimensional problem: mathematical model

ou(x.t) _ 2u(x, t)
ot ox2 7’
where u(x, y) is the insects population density, D is the
diffusion coefficient.

The initial condition: u(x,0) = U, for0 < x < L.

The boundary conditions:

ou(L,t)

u(0,t) = 0, I

= 0.
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Why is a 1 — D model important?

e lItis easy to understand basic concepts behind the
numerical method in the 1 — D case.

e lItis easy to design a computer program for a 1 — D model.

e The exact solution is available: we can validate and verify
the program and results.

e Predictions for a 2 — D solution can be made based on
1 — D results.
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One-dimensional problem: trap counts

e The solution u(x, t) is given by the following infinite series:
AUp - [ (2k +1)7x (2k +1)?>72Dt
ub.t) = — kz_(:) k)" (2L> exp ( E '

e The corresponding trap count over time t is

- /0 ()

where j(t) is the absolute value of the population density
flux through the trap boundary,

o ou(x,t)
jit) =D “ox

x=0

2DU0 (2k + 1)272Dt
pr— Z < T .
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One-dimensional problem: trap counts

u(t) = 8LU0 Z @ +1 [ exp (_(2k +41L)227T20t)] '

e Inthe large-time limit AU(t) — LUy, i.e. all insects are
trapped.

e The trap count can be approximated as

2Uy
A ~ — VD
u(t) N v Dt,
which shows a very good accuracy when either time t is
sufficiently small or the domain length L is sufficiently
large, or both.
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Finite difference (FD) discretization

of a one-dimensional problem
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FD discretization of ODE

e The linear second-order boundary value problem:

y'=pXx)y'+q(x)y +r(x), a<x<b,

e The underlying idea for an FD method:

— replace the first and second derivatives with their
difference approximations

— hence, reduce the boundary value problem to a system of
algebraic equations
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Computational approaches in mathematical ecology

Forward difference approximation of the first derivative

e The Taylor series expansion of y(x) about the point x

dy(x) | h*dPy(&)
dx 2 dx?

y(x+h) =y(x)+h

dy(x) _y(x+h)—y(x)  h d?y(€)

ax h 2 dx2

dy(x) _ y(x+h)—y(x)
dx h +0(h)
dy(x) _ y(x+h)— y(x)
ax h
e The erroris

e:‘dy(x)_y(x+h)—y(x),zo(h) e—0,ash—0
dx h ’ ’ '

the first order approximation

forward difference
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Central difference approximation of the first derivative

e The Taylor series expansion of y(x) about the point x
dy(x) M dy(x) 1 dy(Q)

dx X2 Ix3
(X—h) = y(x) - Py (x) H? d2d m dg
y 4 dx 2 dx2 6 dx3

y(x+h =yx)+h

dy(x) _ y(x+h)—y(x—h) hj‘ & dy(€) | dSy(n)]
ax 2h dx3 adx3

W) _yxEh —yX=h) | oy

ax 2
dy(x) _y(x+h)—y(xX=h)
ax 2h
e The erroris

o dy(X) _y(X‘f‘h)—y(X—h)‘:o(hg)’

central difference

e— 0, ash—0.

=| dx 2h
the second order approximation
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A sketch of FD approximation of the first derivative

the forward (backward) difference the central difference
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FD approximation of higher order derivatives

o Letg(x) = y'(x)
a?y(x) _ dg(x) _ g(x +h/2) — g(x — h/2)

dx? dx -
g(x +h/2) = dy(x;; h2) L AR =)
o(x— hj2) = YO/ Y09 e h)

a?y(x) _ y(x+h) —2y(x) +y(x - h)
dx? h?
e The erroris

. ‘dz;(zx) Cyx+h) - 2;;7(2)() FYX=h) o

the second order approximation
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Numerical solution of the BVP by finite differences:

example

y'=2,y(0)=1,y(1)=3
(V' =px)y +aq(X)y +r(x), a< x < b, y(a) =a, y(b)=p)
Y(x)=x2+x+1 —the exact solution

¢ A uniform computational grid G in the domain x € [0, 1]:
X1 =0,X1=x;+h,i=1,...,N, where h=1/Nis the
grid step size, and N is the number of grid subintervals

e FD discretization at grid points:

y(Xit1) _2};,(2)(’) Y1) _ 2, i=2,...,N—the equation

y(xq)=1, y(xnr1)=3 —the boundary conditions
e =|Y(x) — y(x;)] —the error at the point x;
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Example of numerical solution

10
Number of subintervals
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FD discretization of boundary conditions

e FD discretization at grid points:

Y(Xit1) — y(Xi-1)

y(Xiv1) — 2y (Xi) + y(Xi—1) — p(x)
: 2h

he +

ax)y(xi)+r(x), i=2,....N

y(Oe) — y(x1)

i = «, —thefirstorder! y(xyi1) =20

o We need the second order approximation of the boundary
condition!
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FD discretization of boundary conditions

() = y(x0) _
h
e The equation at the point xq:

«o? but xg does not exist!

Yo=2yi+Yo _Yo—)o
2 P15y

+ a1+ n,

where g; = g(x;)

dy(x1) _ 2y2 —(2+ g W)yr —nh? _ N
ax 2h + pyh?
second order approximation
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Numerical solution

of a1 — D diffusion equation
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The one-dimensional problem

ou(x.t) _ 2u(x, t)
ot ox2 7’
where u(x, y) is the insects population density, D is the
diffusion coefficient.

The initial condition: u(x,0) = U, for0 < x < L.

The boundary conditions:

ou(L,t)

u(0,t) = 0, I

= 0.
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FD discretization of the diffusion equation

n4l:
u
tn+1 ___________________________
At "
P RN R | L
e
i :
Ti AX Tiv1 X

e a uniform grid in the domain x € [0, L], h=L/N
e auniform grid in the domain t € [0, T], At =T/M
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FD discretization of the diffusion equation

A finite difference discretization scheme:

1
—(uf*! = u) = AL,

where the discrete operator A is

D
Avi] = " (Vigr —2Vi + vi_1).
Boundary conditions
uttt =0, forx=0,

27D
|
U/Q/L = UNpt + 5 2 —5(UN = URsq),  forx =L

Initial condition

wW==Uy, i=2,...,N.

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



Importance of accurate BC approximation

Nodes per unit length 3 5 9 11 21

1storder (x10~%) | 359 183 924 741 372

2nd order (x1074) | 0.949 0.288 0.110 0.194 0.100

Maximum relative error obtained in the 1 — D system for 1st
order and 2nd order approximation of the boundary condition at
the external boundary.
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Stability of the FD scheme

1
—(UT = ul) = Ao + (1= o),

i

D
Avi] = 75 (Vigt = 2Vi+ Viq).

The weight parameter o defines a type of the scheme:

The weight 0 = 1 — an implicit (therefore unconditionally
stable) scheme.

The weight 0 = 0 — an explicit scheme.
Stability condition (CFL):

Dbr

S

N —

Computational approaches in mathematical ecology WWMB’14: Federal University of Santa Maria 28-30 July, 2014



Examples of instability

==
el il i s
—
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Implicit and semi-implicit FD schemes

e Fully implicit scheme (backward difference)
1 n+1 n n+1 D n-+1 n-+1 n+1
T = u) = Ny T = (U 20 Uity

e Unconditionally stable scheme

e Higher computational cost (matrix inversion at each time
step)

e The order of approximation is O(7 + h?)
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Implicit and semi-implicit FD schemes

e Crank-Nicolson scheme
1 1
;(UPH _ U:n) _ /\[2U,n+1 + - un+1]
D
Alvi] = ?(VIH —2Vi + Vi_1).

e Unconditionally stable scheme

e Higher computational cost (matrix inversion at each time
step)

e The order of approximation is O(72 + h?)
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Calculation of trap counts

e The trap count over time ¢ is

t
au) = [,
0
where (1) is the absolute value of the population density

flux through the trap boundary,

ou(x,t)
ox

it = o

x=0 '
First order approximation (for any fixed t = t,):

du(x;) _ Uiy —
ax h

Y L o).
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Calculation of trap counts: second order

approximation

du(x)

j(x) = D=

u(x) ~ px(x) = ap + a;x + ax?

J(0) ~ D|ay]
We have

p(0) = ap = w1, p(h) = ap + arh+ axh? = up,
p(2h) = ap + 2a1h + 4axh® = us

As uy = 0, the approximation of the flux is given by

, D
J(0) = ﬁ!4U2 — Usl.
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Calculation of trap counts

, D
megﬁw—w-

e The total number of insects AU™™ crossing the trap
boundary between time t, and t, 4 is obtained as
AU = j(0)7 (the midpoint rule of integration).

e The cumulative trap count AU(t,1) = AU at time ¢, 1
is then computed by adding this value to that obtained at
the previous time f,:

AU™T = AU" + AUMHY,
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Validation of computations

10 ‘

Absolute trap count error

Nodes per unit length
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Validation of computations

600 \ \

Trap counts

| |
0 200 400 600
Time
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Validation of computations

0.02

Trap count error

-0.04 :
0 200 400 600

Time
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Validation of computations

10

Absolute trap count error
=
o
T
L

Nodes per unit length
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Finite difference discretization

of a2 — D diffusion equation
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The 2-D diffusion model

Equation:
u_ (P P
ot ~\ox2  oy2)’

Boundary condition at the trap boundary:
u(x,y,t)y=0 forany (x,y) e dS.
Boundary condition at the external boundary:

ou(x,y,t)

an =0 at 09Q.

Initial condition:

u(x,y,t)=Uy >0 forany (x,y) € Qs.
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2-D computational grid

e a uniform grid in the domain x € [-L, L], h=L/Nm
e auniform grid in the domain y € [-L,L], h=L/Nm
e auniform grid in the domain t € [0, T], At =T/M

(-L,L) LD
i,j+H1
i41,j, SPNES W1
L)
ij-
(-L.0)
(-L,-L) (0,-L) (L,-L)
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FD discretization of the 2 — D problem

Let uf = u(x;, ¥, tn) and u,fj’“ = u(X;, ¥j, ths1)-

FD discretization of the equation:

1
(U17+1 — Un = (/\1 + /\2)[UU]

where D
Mlvi] = 25 (Vi1 =2V + Vi),

D
Nalvi] = 55 (Vij1 = 2Vj + Vij1).
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FD discretization of the 2-D problem

The boundary condition at the trap boundary:

+1 0,
fori=i,j=j,...,jJy (the left boundary of the trap),
i=1iy,j=,-..,jn (the right boundary of the trap),
j=J,I=1i,..., Iy (the bottom boundary of the trap),
f=Jju,i=1i,..., iy (the top boundary of the trap)

The boundary condition at the external boundary x = 0:

h2 n-+1 n n n n

- (Ul = uhy) AUl - 20—l -y =0,
forj=2,...,2Nm (similar b.c. at the rest of the external boundary)

The initial condition:

U,(,J:Uo, i=1,2,....2Nm+1, j=1,2,...,2Nm +1.
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2-D challenges

e Increasing complexity of programming

e Time consuming computation: 1 node = 1 second — N
seconds (a 1 — D problem) vs. N x N seconds (a2 — D
problem)

e Geometry challenges:

» discretization at the corners;

» a curvilinear boundary is a realistic option (unstructured
grids, finite element discretization);
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More examples of PDEs in ecology: reaction-diffusion

equations

ou 0’u  0%u

Bf D <8X2 + 8y2> + f(u, x, y).
Reaction-diffusion equations describe the following
ecological phenomena (see the ref. below)

o the existence of a minimal patch size necessary to sustain
a population

e the propagation of wavefronts corresponding to biological
invasions

o the formation of spatial patterns in the distributions of
populations in homogeneous environments
C.Cosner. Reaction-diffusion equations and Ecological
Modeling. in Tutorials in Mathematical Biosciences IV:
Evolution and Ecology, Avner Friedman (ed.), Springer,
2008
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Course overview:

anything else?
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Topics for self-study: numerical linear algebra

e Matrix computations

e Solving linear systems of algebraic equations

e Finding eigenvalues
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