COMPUTATIONAL APPROACHES IN MATHEMATICAL ECOLOGY

Natalia Petrovskaya

School of Mathematics,
University of Birmingham, UK

LECTURE 3: Numerical solution of

partial differential equations

The outline

- Ecological problem: monitoring insects movement
- Mathematical problem: the initial-boundary-value problem (IBVP) for the diffusion equation
- The 1 - D case: finite difference discretization of the second order IBVP
- The 2 - D case: finite difference method for the diffusion IBVP

Ecological problem:

monitoring insects movement

Problem statement

- Monitoring of pest insects is an important part of the integrated pest management.
- Interpretation of trap counts remains a challenging problem.
- How is the number of insects caught over a fixed time related to the insects population density?
- A mean-field mathematical model of insect trapping is based on the diffusion equation.

A single trap

The road map

- Learn how to solve the diffusion equation in a $2-D$ domain.
- Learn how to reconstruct trap counts from the solution $u(x, y)$ to the diffusion equation.
- Compare the trap counts obtained from the solution $u(x, y)$ to the diffusion equation with field data.
- Vary the parameters in the diffusion equation to reach good agreement between numerical data and field data. That will give you the density $u(x, y)$ as required.

Skills required

- Solve the diffusion equation in a $2-D$ domain: approximation of the spatial terms - lecture 3 approximation of the temporal term - lecture 2 approximation of the boundary conditions - lecture 3
- Reconstruct trap counts from the solution $u(x, y)$ to the diffusion equation:
approximation of the flux - interpolation, lecture 1
calculation of trap counts - numerical integration, lecture 1
- Error analysis, validation, verification - lectures 1, 2, 3

One-dimensional problem: mathematical model

$$
\frac{\partial u(x, t)}{\partial t}=D \frac{\partial^{2} u(x, t)}{\partial x^{2}}
$$

where $u(x, y)$ is the insects population density, D is the diffusion coefficient.

The initial condition: $u(x, 0)=U_{0}$, for $0<x<L$.

The boundary conditions:

$$
u(0, t)=0, \quad \frac{\partial u(L, t)}{\partial x}=0
$$

Why is a 1 - D model important?

- It is easy to understand basic concepts behind the numerical method in the $1-D$ case.
- It is easy to design a computer program for a $1-D$ model.
- The exact solution is available: we can validate and verify the program and results.
- Predictions for a $2-D$ solution can be made based on $1-D$ results.

One-dimensional problem: trap counts

- The solution $u(x, t)$ is given by the following infinite series:
$u(x, t)=\frac{4 U_{0}}{\pi} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)} \sin \left(\frac{(2 k+1) \pi x}{2 L}\right) \exp \left(-\frac{(2 k+1)^{2} \pi^{2} D t}{4 L^{2}}\right)$.
- The corresponding trap count over time t is

$$
\Delta U(t)=\int_{0}^{t} j(\tau) d \tau
$$

where $j(t)$ is the absolute value of the population density flux through the trap boundary,

$$
\begin{gathered}
j(t)=D\left|\frac{\partial u(x, t)}{\partial x}\right|_{x=0} \\
j(t)=\frac{2 D U_{0}}{L} \sum_{k=0}^{\infty} \exp \left(-\frac{(2 k+1)^{2} \pi^{2} D t}{4 L^{2}}\right)
\end{gathered}
$$

One-dimensional problem: trap counts

$$
\Delta U(t)=\frac{8 L U_{0}}{\pi^{2}} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}\left[1-\exp \left(-\frac{(2 k+1)^{2} \pi^{2} D t}{4 L^{2}}\right)\right]
$$

- In the large-time limit $\Delta U(t) \rightarrow L U_{0}$, i.e. all insects are trapped.
- The trap count can be approximated as

$$
\Delta U(t) \approx \frac{2 U_{0}}{\sqrt{\pi}} \sqrt{D t}
$$

which shows a very good accuracy when either time t is sufficiently small or the domain length L is sufficiently large, or both.

References

- S.V.Petrovskii, N.B.Petrovskaya, D.Bearup. Multiscale Approach to Pest Insect Monitoring: Random Walks, Pattern Formation, Synchronization, and Networks. Physics of Life Reviews, 2014, doi: 10.1016/j.plrev.2014.02.001
- D. Bearup, N.B.Petrovskaya, S.V.Petrovskii. Some Analytical and Numerical Approaches to Understanding Trap Counts Resulting from Pest Insect Immigration. (submitted to Mathematical Biosciences)
- S.V.Petrovskii, D.Bearup, D.A.Ahmed, R.Blackshaw. Estimating Insect Population Density from Trap Counts. Ecological Complexity, 2012, pp.69-82.

Finite difference (FD) discretization

of a one-dimensional problem

FD discretization of ODE

- The linear second-order boundary value problem:

$$
\begin{gathered}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x), \quad a \leq x \leq b \\
y(a)=\alpha, y(b)=\beta
\end{gathered}
$$

- The underlying idea for an FD method:
- replace the first and second derivatives with their difference approximations
- hence, reduce the boundary value problem to a system of algebraic equations

Forward difference approximation of the first derivative

- The Taylor series expansion of $y(x)$ about the point x

$$
\begin{gathered}
y(x+h)=y(x)+h \frac{d y(x)}{d x}+\frac{h^{2}}{2} \frac{d^{2} y(\xi)}{d x^{2}} \\
\frac{d y(x)}{d x}=\frac{y(x+h)-y(x)}{h}+\frac{h}{2} \frac{d^{2} y(\xi)}{d x^{2}} \\
\frac{d y(x)}{d x}=\frac{y(x+h)-y(x)}{h}+O(h) \\
\frac{d y(x)}{d x} \approx \frac{y(x+h)-y(x)}{h} \quad \text { forward difference }
\end{gathered}
$$

- The error is

$$
e=\left|\frac{d y(x)}{d x}-\frac{y(x+h)-y(x)}{h}\right|=O(h), \quad e \rightarrow 0, \text { as } h \rightarrow 0 .
$$

the first order approximation

Central difference approximation of the first derivative

- The Taylor series expansion of $y(x)$ about the point x

$$
\begin{gathered}
y(x+h)=y(x)+h \frac{d y(x)}{d x}+\frac{h^{2}}{2} \frac{d^{2} y(x)}{d x^{2}}+\frac{h^{3}}{6} \frac{d^{3} y(\xi)}{d x^{3}} \\
y(x-h)=y(x)-h \frac{d y(x)}{d x}+\frac{h^{2}}{2} \frac{d^{2} y(x)}{d x^{2}}-\frac{h^{3}}{6} \frac{d^{3} y(\eta)}{d x^{3}} \\
\frac{d y(x)}{d x}=\frac{y(x+h)-y(x-h)}{2 h}+\frac{h^{2}}{6}\left[-\frac{d^{3} y(\xi)}{d x^{3}}+\frac{d^{3} y(\eta)}{d x^{3}}\right] \\
\frac{d y(x)}{d x}=\frac{y(x+h)-y(x-h)}{2 h}+O\left(h^{2}\right) \\
\frac{d y(x)}{d x} \approx \frac{y(x+h)-y(x-h)}{2 h} \quad \text { central difference }
\end{gathered}
$$

- The error is
$e=\left|\frac{d y(x)}{d x}-\frac{y(x+h)-y(x-h)}{2 h}\right|=O\left(h^{2}\right), \quad e \rightarrow 0$, as $h \rightarrow 0$. the second order approximation

A sketch of FD approximation of the first derivative

the forward (backward) difference

the central difference

FD approximation of higher order derivatives

- Let $g(x)=y^{\prime}(x)$

$$
\begin{aligned}
& \frac{d^{2} y(x)}{d x^{2}}=\frac{d g(x)}{d x} \approx \frac{g(x+h / 2)-g(x-h / 2)}{h} \\
& g(x+h / 2)=\frac{d y(x+h / 2)}{d x} \approx \frac{y(x+h)-y(x)}{h} \\
& g(x-h / 2)=\frac{d y(x-h / 2)}{d x} \approx \frac{y(x)-y(x-h)}{h} \\
& \frac{d^{2} y(x)}{d x^{2}} \approx \frac{y(x+h)-2 y(x)+y(x-h)}{h^{2}}
\end{aligned}
$$

- The error is

$$
e=\left|\frac{d^{2} y(x)}{d x^{2}}-\frac{y(x+h)-2 y(x)+y(x-h)}{h^{2}}\right|=O\left(h^{2}\right)
$$

the second order approximation

Numerical solution of the BVP by finite differences: example

$$
\begin{aligned}
& y^{\prime \prime}=2, y(0)=1, y(1)=3 \\
& \left(y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x), a \leq x \leq b, y(a)=\alpha, y(b)=\beta\right) \\
& Y(x)=x^{2}+x+1 \quad-\text { the exact solution }
\end{aligned}
$$

- A uniform computational grid \mathcal{G} in the domain $x \in[0,1]$: $x_{1}=0, x_{i+1}=x_{i}+h, i=1, \ldots, N$, where $h=1 / N$ is the grid step size, and N is the number of grid subintervals
- FD discretization at grid points:

$$
\begin{gathered}
\frac{y\left(x_{i+1}\right)-2 y\left(x_{i}\right)+y\left(x_{i-1}\right)}{h^{2}}=2, \quad i=2, \ldots, N-\text { the equation } \\
y\left(x_{1}\right)=1, \quad y\left(x_{N+1}\right)=3 \quad \text { - the boundary conditions } \\
e_{i}=\left|Y\left(x_{i}\right)-y\left(x_{i}\right)\right| \quad \text { - the error at the point } x_{i}
\end{gathered}
$$

Example of numerical solution

FD discretization of boundary conditions

$$
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x), a \leq x \leq b, \frac{d y(a)}{d x}=\alpha, y(b)=\beta
$$

- FD discretization at grid points:

$$
\begin{gathered}
\frac{y\left(x_{i+1}\right)-2 y\left(x_{i}\right)+y\left(x_{i-1}\right)}{h^{2}}=p\left(x_{i}\right) \frac{y\left(x_{i+1}\right)-y\left(x_{i-1}\right)}{2 h}+ \\
q\left(x_{i}\right) y\left(x_{i}\right)+r\left(x_{i}\right), \quad i=2, \ldots, N \\
\frac{y\left(x_{2}\right)-y\left(x_{1}\right)}{h}=\alpha,- \text { the first order! } y\left(x_{N+1}\right)=\beta
\end{gathered}
$$

- We need the second order approximation of the boundary condition!

FD discretization of boundary conditions

$$
\frac{y\left(x_{2}\right)-y\left(x_{0}\right)}{h}=\alpha ? \quad \text { but } x_{0} \text { does not exist! }
$$

- The equation at the point x_{1} :

$$
\begin{gathered}
\frac{y_{2}-2 y_{1}+y_{0}}{h^{2}}=p_{1} \frac{y_{2}-y_{0}}{2 h}+q_{1} y_{1}+r_{1} \\
\text { where } g_{i} \equiv g\left(x_{i}\right) \\
\frac{d y\left(x_{1}\right)}{d x} \approx \frac{2 y_{2}-\left(2+q_{1} h^{2}\right) y_{1}-r_{1} h^{2}}{2 h+p_{1} h^{2}}=\alpha \\
\text { second order approximation }
\end{gathered}
$$

References

- F.B.Hildebrand. Finite-Difference Equations and Simulations. Prentice-Hall, Englewood Cliffs, New Jersey, 1968.
- H.Levy and F.Lessman. Finite Difference Equations. Dover, New York, 1992.
- D.Richtmeyer and K.W.Morton. Difference Methods for Initial Value Problems. Wiley, New York, 1967.
- M.Spiegel. Calculus of Finite Differences and Differential Equations. New York: McGraw-Hill, 1971.

Numerical solution

of a 1 - D diffusion equation

The one-dimensional problem

$$
\frac{\partial u(x, t)}{\partial t}=D \frac{\partial^{2} u(x, t)}{\partial x^{2}},
$$

where $u(x, y)$ is the insects population density, D is the diffusion coefficient.

The initial condition: $u(x, 0)=U_{0}$, for $0<x<L$.

The boundary conditions:

$$
u(0, t)=0, \quad \frac{\partial u(L, t)}{\partial x}=0 .
$$

FD discretization of the diffusion equation

- a uniform grid in the domain $x \in[0, L], h=L / N$
- a uniform grid in the domain $t \in[0, T], \Delta t=T / M$

FD discretization of the diffusion equation

A finite difference discretization scheme:

$$
\frac{1}{\tau}\left(u_{i}^{n+1}-u_{i}^{n}\right)=\Lambda\left[u_{i}^{n}\right]
$$

where the discrete operator Λ is

$$
\Lambda\left[v_{i}\right]=\frac{D}{h^{2}}\left(v_{i+1}-2 v_{i}+v_{i-1}\right) .
$$

Boundary conditions

$$
\begin{gathered}
u_{1}^{n+1}=0, \quad \text { for } x=0, \\
u_{N+1}^{n+1}=u_{N+1}^{n}+\frac{2 \tau D}{h^{2}}\left(u_{N}^{n}-u_{N+1}^{n}\right), \quad \text { for } x=L .
\end{gathered}
$$

Initial condition

$$
u_{i}^{0}=U_{0}, \quad i=2, \ldots, N .
$$

Importance of accurate BC approximation

Nodes per unit length	3	5	9	11	21
1st order $\left(\times 10^{-4}\right)$	359	183	92.4	74.1	37.2
2nd order $\left(\times 10^{-4}\right)$	0.949	0.288	0.110	0.194	0.100

Maximum relative error obtained in the $1-D$ system for 1 st order and 2nd order approximation of the boundary condition at the external boundary.

Stability of the FD scheme

$$
\begin{gathered}
\frac{1}{\tau}\left(u_{i}^{n+1}-u_{i}^{n}\right)=\Lambda\left[\sigma u_{i}^{n+1}+(1-\sigma) u_{i}^{n}\right] \\
\Lambda\left[v_{i}\right]=\frac{D}{h^{2}}\left(v_{i+1}-2 v_{i}+v_{i-1}\right)
\end{gathered}
$$

The weight parameter σ defines a type of the scheme:
The weight $\sigma=1$ - an implicit (therefore unconditionally stable) scheme.
The weight $\sigma=0-$ an explicit scheme.
Stability condition (CFL):

$$
\frac{D \tau}{h^{2}} \leq \frac{1}{2}
$$

Examples of instability

Implicit and semi-implicit FD schemes

- Fully implicit scheme (backward difference)

$$
\frac{1}{\tau}\left(u_{i}^{n+1}-u_{i}^{n}\right)=\Lambda\left[u_{i}^{n+1}\right]=\frac{D}{h^{2}}\left(u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}\right)
$$

- Unconditionally stable scheme
- Higher computational cost (matrix inversion at each time step)
- The order of approximation is $O\left(\tau+h^{2}\right)$

Implicit and semi-implicit FD schemes

- Crank-Nicolson scheme

$$
\begin{gathered}
\frac{1}{\tau}\left(u_{i}^{n+1}-u_{i}^{n}\right)=\Lambda\left[\frac{1}{2} u_{i}^{n+1}+\frac{1}{2} u_{i}^{n+1}\right] \\
\Lambda\left[v_{i}\right]=\frac{D}{h^{2}}\left(v_{i+1}-2 v_{i}+v_{i-1}\right)
\end{gathered}
$$

- Unconditionally stable scheme
- Higher computational cost (matrix inversion at each time step)
- The order of approximation is $O\left(\tau^{2}+h^{2}\right)$

Calculation of trap counts

- The trap count over time t is

$$
\Delta U(t)=\int_{0}^{t} j(\tau) d \tau
$$

where $j(t)$ is the absolute value of the population density flux through the trap boundary,

$$
j(t)=D\left|\frac{\partial u(x, t)}{\partial x}\right|_{x=0}
$$

First order approximation (for any fixed $t=t_{n}$):

$$
\frac{d u\left(x_{i}\right)}{d x}=\frac{u_{i+1}-u_{i}}{h}+O(h)
$$

Calculation of trap counts: second order approximation

$$
\begin{gathered}
j(x) \approx D\left|\frac{d u(x)}{d x}\right| \\
u(x) \approx p_{k}(x)=a_{0}+a_{1} x+a_{2} x^{2} \\
j(0) \approx D\left|a_{1}\right|
\end{gathered}
$$

We have

$$
\begin{gathered}
p(0)=a_{0}=u_{1}, \quad p(h)=a_{0}+a_{1} h+a_{2} h^{2}=u_{2} \\
\\
p(2 h)=a_{0}+2 a_{1} h+4 a_{2} h^{2}=u_{3}
\end{gathered}
$$

As $u_{1}=0$, the approximation of the flux is given by

$$
j(0) \approx \frac{D}{2 h}\left|4 u_{2}-u_{3}\right|
$$

Calculation of trap counts

$$
j(0) \approx \frac{D}{2 h}\left|4 u_{2}-u_{3}\right|
$$

- The total number of insects $\Delta U^{n, n+1}$ crossing the trap boundary between time t_{n} and t_{n+1} is obtained as $\Delta U^{n, n+1}=j(0) \tau$ (the midpoint rule of integration).
- The cumulative trap count $\Delta U\left(t_{n+1}\right)=\Delta U^{n+1}$ at time t_{n+1} is then computed by adding this value to that obtained at the previous time t_{n} :

$$
\Delta U^{n+1}=\Delta U^{n}+\Delta U^{n, n+1}
$$

Validation of computations

Validation of computations

Validation of computations

Validation of computations

References

- S.V.Petrovskii, N.B.Petrovskaya, D.Bearup. Multiscale Approach to Pest Insect Monitoring: Random Walks, Pattern Formation, Synchronization, and Networks. Physics of Life Reviews, 2014, doi: 10.1016/j.plrev.2014.02.001
- J.C.Strikwerda. Finite Difference Schemes and Partial Differential Equations. Brooks/Cole Publishing, Pacific Grove, CA, 1989.
- J.W. Thomas. Numerical Partial Differential Equations. Springer-Verlag, NY, 1995.

Finite difference discretization

of a 2 - D diffusion equation

The 2-D diffusion model

Equation:

$$
\frac{\partial u}{\partial t}=D\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

Boundary condition at the trap boundary:

$$
u(x, y, t)=0 \quad \text { for any }(x, y) \in \partial S
$$

Boundary condition at the external boundary:

$$
\frac{\partial u(x, y, t)}{\partial \mathbf{n}}=0 \quad \text { at } \partial \Omega
$$

Initial condition:

$$
u(x, y, t)=U_{0}>0 \text { for any }(x, y) \in \Omega_{s}
$$

2-D computational grid

- a uniform grid in the domain $x \in[-L, L], h=L / N m$
- a uniform grid in the domain $y \in[-L, L], h=L / N m$
- a uniform grid in the domain $t \in[0, T], \Delta t=T / M$

FD discretization of the $2-D$ problem

Let $u_{i j}^{n} \equiv u\left(x_{i}, y_{j}, t_{n}\right)$ and $u_{i j}^{n+1} \equiv u\left(x_{i}, y_{j}, t_{n+1}\right)$.
FD discretization of the equation:

$$
\frac{1}{\tau}\left(u_{i j}^{n+1}-u_{i j}^{n}\right)=\left(\Lambda_{1}+\Lambda_{2}\right)\left[u_{i j}^{n}\right],
$$

where

$$
\begin{aligned}
& \Lambda_{1}\left[v_{i j}\right]=\frac{D}{h^{2}}\left(v_{i+1, j}-2 v_{i j}+v_{i-1, j}\right), \\
& \Lambda_{2}\left[v_{i j}\right]=\frac{D}{h^{2}}\left(v_{i, j+1}-2 v_{i j}+v_{i, j-1}\right) .
\end{aligned}
$$

FD discretization of the 2-D problem

The boundary condition at the trap boundary:

$$
u_{i j}^{n+1}=0
$$

for $i=i_{l}, j=j_{l}, \ldots, j_{I \prime}$ (the left boundary of the trap),
$i=i_{I I}, j=j_{l}, \ldots, j_{I I}$ (the right boundary of the trap),
$j=j_{I}, i=i_{l}, \ldots, i_{I I}$ (the bottom boundary of the trap), $j=j_{I I}, i=i_{I}, \ldots, i_{I I}$ (the top boundary of the trap)

The boundary condition at the external boundary $x=0$:

$$
\frac{h^{2}}{\tau D}\left(u_{1, j}^{n+1}-u_{1, j}^{n}\right)+4 u_{1, j+1}^{n}-2 u_{2, j}^{n}-u_{1, j+1}^{n}-u_{1, j-1}^{n}=0
$$

for $j=2, \ldots, 2 \mathrm{Nm}$ (similar b.c. at the rest of the external boundary)
The initial condition:

$$
u_{i j}^{0}=U_{0}, \quad i=1,2, \ldots, 2 N m+1, j=1,2, \ldots, 2 N m+1
$$

2-D challenges

- Increasing complexity of programming
- Time consuming computation: 1 node $=1$ second $\rightarrow N$ seconds (a $1-D$ problem) vs. $N * N$ seconds (a $2-D$ problem)
- Geometry challenges:
- discretization at the corners;
- a curvilinear boundary is a realistic option (unstructured grids, finite element discretization);

References

- G. Gordon, G.D.Smith. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, 1985.
- K.W.Morton, D.F.Mayers. Numerical Solution of Partial Differential Equations. An Introduction. Cambridge, Cambridge University Press, 1994.
- D. Bearup, N.B.Petrovskaya, S.V.Petrovskii. Some Analytical and Numerical Approaches to Understanding Trap Counts Resulting from Pest Insect Immigration. (submitted to Mathematical Biosciences)

More examples of PDEs in ecology: reaction-diffusion equations

$$
\frac{\partial u}{\partial t}=D\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+f(u, x, y) .
$$

Reaction-diffusion equations describe the following ecological phenomena (see the ref. below)

- the existence of a minimal patch size necessary to sustain a population
- the propagation of wavefronts corresponding to biological invasions
- the formation of spatial patterns in the distributions of populations in homogeneous environments
C.Cosner. Reaction-diffusion equations and Ecological Modeling. in Tutorials in Mathematical Biosciences IV: Evolution and Ecology, Avner Friedman (ed.), Springer, 2008

Course overview:

anything else?

Topics for self-study: numerical linear algebra

- Matrix computations
- Solving linear systems of algebraic equations
- Finding eigenvalues

