
Impact of pay-as-you-go cloud platforms on

software pricing and development:

a review and case study

Fernando Pires Barbosa and Andrea Schwertner Charão

Programa de Pós-Graduação em Informática,
Universidade Federal de Santa Maria, RS - Brasil

fernando.pires.barbosa@gmail.com,

andrea@inf.ufsm.br

http://www.ufsm.br/ppgi

Abstract. One of the major highlights of cloud computing concerns the
pay-as-you-go pricing model, where one pays according to the amount of
resources consumed. Some cloud platforms already o�er the pay-as-you-
go model and this creates a new scenario in which the rational computing
resource consumption gains in importance. In this paper, we address the
impact of this new approach in software pricing and software develop-
ment. Our hypothesis is that hardware consumption may impact directly
on the software vendor pro�t and thus it can be necessary to adapt some
software development practices. In this direction, we discuss the need to
revise well-established models such as COCOMO II and some aspects
related to requirements engineering and benchmarking tools. We also
present a case study pointing that disregarding the rational consump-
tion of resources can generate wastes that may impact on the software
vendor pro�t.

Keywords: Cloud Computing, Software Pricing, Cloud Platform, Soft-
ware Engineering

1 Introduction

Cloud computing is a new computing paradigm based on economies of scale,
which predicts the existence of a dynamically scalable infrastructure, where re-
sources are allocated and delivered on demand over the Internet [6]. One of cloud
computing highlights is its pricing model, also known as pay-as-you-go. In this
model, IT resources are o�ered in an unlimited way and one pays an amount
according the actual resources used for a certain period (similarly to the energy
pricing model) [2].

The cloud vendors o�er di�erent kind of services, including IaaS, DaaS, PaaS
and SaaS [9]. Although one can deploy applications on any of the layers, the more
natural option for software developers is the platform as a service (PaaS ) [2].
Some PaaS vendors currently adopt the pay-as-you-go model and, in some cases,



2 Pay-as-you-go cloud platforms: impact on software pricing and development

one can clearly see the �nancial impact of software optimization techniques ap-
plied to resource consumption. In AppEngine platform, for example, studies
indicate that using cache strategy instead of direct database access can reduce
by about 20 times the total cost of the operation [2]. Issues like that create a new
scenario for software developers, who may have to adapt some of the practices
they currently use.

In this new scenario, rational resource consumption become a strategy to
reduce the amount of hardware used by applications and therefore reduce the
amount to be paid to the vendor's platform. In this paper, we review software
pricing issues facing this scenario and analyze some of the practices used in soft-
ware development, indicating whether and how they are a�ected by this new
reality. The paper is organized as follows: Section 2 focus on software pricing
while Section 3 analyze software development aspects. The analysis is focused
on: i) software development estimates (with COCOMO II), ii) requirements engi-
neering (ISO/IEC 25010) and iii) benchmarking tools (SPEC). Section 4 presents
a case study aiming to identify whether a system developed without concern for
the rational resource consumption can generate resource wasting that may re-
sult in �nancial loss if the system is distributed through a pay-as-you-go cloud
platform. Section 5 presents our �nal remarks.

2 Software Pricing

Software pricing has been discussed for several years in many ways. Since the '90s
there has been studies on establishing a fair price for software [5] and new issues
have been addressed recently. One of the recent research topics concerns the
di�erences between the traditional, perpetual license model and the new software
as a service (SaaS) model [12]. Beyond the SaaS pricing model issues, di�erent
studies on software pricing have been developed, including: models using the
value added to client's business [12], studies based on stock market [16], pricing
based on cost accounting [19] and use of price sensitivity in order to identify
features that should be prioritized [10]. Even with so many di�erent studies,
software pricing involves basic elements that can be applied to all models [5], as
summarized in Table 1).

Considering the aspects in Table 1, the �rst item a�ected by pay-as-you-go

cloud platforms is number 3. Revenue Potential. In the traditional model, the
hardware required to run the software is a customer obligation. In the cloud
model, it will be probably an obligation applied to software vendor. If the soft-
ware is based on a pay-as-you-go platform, the software vendor company will
have part of the revenue gains spent to pay the platform vendor.

Establishing a �nal software price in this scenario involves estimating not
just the software revenue potential, but also the hardware resources required
to use it. That changes the way we face the hardware resources throughout
the software development process: in the pay-as-you-go model, one must design
the software to use minimal hardware resources, since it will directly impact
your pro�t. This a�ects another item in Table 1: number 5. Estimate software



Pay-as-you-go cloud platforms: impact on software pricing and development 3

Table 1. Software pricing issues [5].

development cost. Section 3 presents an analysis on software development and
the �rst aspect analyzed, in Section 3.1, is how one of the most used software
cost estimation models can face this situation.

3 Impact on software development

Due to changes in software pricing addressed in Section 2, we review some as-
pects of software development that could also change face to the pay-as-ou-go

model. In this section, we analyze software cost estimation (with COCOMO II),
requirements engineering (with ISO/IEC 25010 and the traditional approach of
non-functional requirements based on quality standards) and, at last, bench-
marking tools (the traditional SPEC benchmark suites and new research works
that are going on).

3.1 Software cost estimation (COCOMO)

The �rst studies on software cost estimation begun in '60s and there has been
signi�cant progress since then. Several models have been proposed during the
'70s and '80s and some of them have been gradually improved and adapted until
today. One of the most used models is COCOMO II (Constructive Cost Model),
which is the latest major extension to the original COCOMO (COCOMO 81)
model published in 1981 and has several extensions as shown in Fig. 1.

COCOMO II estimates the e�ort using a person-month value based on 22
items split into 5 software scale drivers and 17 software cost drivers as shown
in Table 2. For each item is assigned a value and, the higher this value, the
greater the e�ort required. Required Software Reliability (RELY), for example,
means the extent to which the software must perform its intended function over
a period of time. It ranges from very low to very high. If the e�ect of a software
failure is only a slight inconvenience, the RELY value is very low. If a failure
would risk human life then RELY is very high.

The platform items refers to the target-machine hardware and infrastructure
software. Execution Time Constraint (TIME) is expressed in terms of the per-
centage of available execution time to be used by the software. Main Storage



4 Pay-as-you-go cloud platforms: impact on software pricing and development

Fig. 1. COCOMO extensions, adapted from [3]. Dates mean the �rst paper published.

Constraint (STOR) represents the degree of main storage constraint imposed on
the software. Fig. 2 shows the rating ranges for TIME and STOR.

Fig. 2. TIME and STORE rating ranges (COCOMO Model De�nition Manual [4]).

In a pay-as-you-go platform, it would be impossible to use the approach based
on percentage of available resources as shown in Fig. 2. In a cloud environment,
by de�nition, there is no maximum available resource amount. Resources are
provided on demand according to user needs. So it does not make sense to range
TIME and STOR based on an available resource percentage.

In a paper on the impact of the cloud model in software engineering [8], the
authors propose a change in COCOMO 81, suggesting the creation of a new
software class called Cloud Computing, to represent the complexity added by
cloud platforms. The point is that this steady increase in software complexity
is one of the reasons that led replacing COCOMO 81 by COCOMO II. That is,
the problem that the article is meant to solve has been solved yet (by COCOMO
II). However, even COCOMO II need to be revised. Not just about the cloud



Pay-as-you-go cloud platforms: impact on software pricing and development 5

Table 2. COCOMO cost and scale drivers. Highlight on platform factor.

environment and its complexity, but mainly about the pay-as-you-go model. In
such model, the more resources you consume the less its pro�t. So there is no
way to establish a value for the items TIME and STOR based on a percentage of
available resources. They must be revised to take into account the rational con-
sumption of resources, even though they are always available. Another question
to be addressed on this aspect is: the tools and models currently used allow you
know beforehand the amount of resources that will be consumed by a particular
software? And how do you know if a particular piece of code should or should
not be optimized on this perspective? Section 3.2 discusses these issues.

3.2 Requirements and software engineering (ISO/IEC 25010)

Requirements engineering is generally accepted to be the most critical and com-
plex process within the software development process [15]. It makes sense, since
the requirements are used to describe software features and its behavior. Re-
quirements engineering is mostly performed in the beginning of the software
development cycle, but its activities cover the entire cycle in order to detail the
software features [15]. Requirements are commonly classi�ed as functional and
non-functional. A functional requirement speci�es an action performed by a sys-
tem without considering its environment. Non-functional requirements describes
just the characteristics such as environment, platform, performance, constraints,
reliability, etc.

Functional and non-functional requirements are put together in a Software
Requirement Speci�cation (SRS) document. It contains details on each feature
and information about how the application must interact with the system envi-



6 Pay-as-you-go cloud platforms: impact on software pricing and development

ronment, considering issues such as response time, availability etc. SRS document
is the one which will guide the entire software development process.

Being an important issue, requirements are also taken into account by soft-
ware quality area. ISO/IEC 25010 replaced ISO/IEC 9126 in software quality
standards. It de�nes 8 characteristics for product quality. There are also 31 sub-
characteristics as shown in Fig. 3 [11].

Fig. 3. ISO25010 characteristics. Highlight to e�ciency characteristics.

Performance e�ciency characteristic is de�ned by ISO 25010 as �the perfor-
mance relative to the amount of resources used under stated condition�. That is
the quality attribute related to resource consumption. It has 3 sub-characteristics:
time behavior, related do response time; resource utilization, amount and type
of resources used; capacity, maximum limits of the product (such as concurrent
users, size of database, throughput transactions etc.)

Thus, in software engineering, performance and resource consumption re-
quirements are treated as non-functional requirements and have a direct relation
with quality attributes, speci�cally the Performance E�ciency characteristic.
The e�ciency measurement is made by objective criteria, which are established
in advance and must be attended by the software. An example criteria is: "on a

server with 1GB RAM and two 1,8GHz processors operating with a load of 400

concurrent users, 95% of all requests must return within 5 seconds and 90% of

them in up to 3 seconds using up to 50% of CPU and memory available".
After detailing the e�ciency criteria in non-functional requirements at SRS,

it is possible to lead measurements to check if software meets the criteria or
not. It can be done using forms like the one at Fig. 4. This is how the resource
consumption issues are treated in traditional software development process.

Traditional approach induces the software requirement process to identify
features with huge concurrent use. That is because one must inform the soft-
ware designers which features they should provide a special treatment in order
to ensure the response time required by quality criteria. In the pay-as-you-go



Pay-as-you-go cloud platforms: impact on software pricing and development 7

Fig. 4. Example of form used to software e�ciency assessment [17].

model, the amount of resources consumed a�ects software vendor pro�t. There-
with, resource consumption is no longer just a matter of quality and must be
viewed in a more strategic way. That brings a new issue to software require-
ments engineering: estimating the amount of resources that will be consumed by
the software. Optimize an application to consume the lower amount of resource
is di�erent than optimize it to attempt quality criteria such as response time
or throughput. The new question to be addressed in the software requirement
elicitation process is: �which features will be used more often?�.

The answer to these questions indicates which features should be optimized
as an strategy to reduce the amount paid to platform vendor. That brings a new
concern to software developers about the optimization: optimizing features with

biggest potential to consume resources. All of that indicates another software
development aspect to be reviwed: the performance benchmark tools.

3.3 Benchmarking tools (SPEC)

Performance evaluation of computer systems has been studied for several years
and one of the most appreciated issues are the benchmarking tools. Until the
'80s, the main measuring instruments were MIPS and M�ops (both related to
CPU speed). But then the systems complexity required new tools [7] and that
has led to corporations like SPEC [18]. SPEC was formed to establish, maintain
and endorse a standardized set of relevant benchmarks, developing and regu-
lating benchmark suites. SPEC has more than 60 members and also reviews
and publishes submitted results from them. Among benchmark suites provided
by SPEC, Java benchmarks are the ones with closer relationship to traditional
software development. The SPECJEnterprise2010 benchmark is the most com-
prehensive of them, since it considers the whole J2EE speci�cation (including
Web Server, Application Server, Database Server and JMS System).

SPECJEnterprise2010 is the third generation of the SPEC organization's
J2EE industry standard benchmark application. Its performance metric is EjOPS
(Enterprise jAppServer Operations Per Second). Earlier generations also used
a price/performance metric but it was removed and now one must calculate



8 Pay-as-you-go cloud platforms: impact on software pricing and development

price/performance separately. That can be done using EjOPS and the BOM
(Bill of Materials) used to reproduce the results. Fig. 5 shows how the results
are provided by SPEC.

Fig. 5. Example of SPECJEnterprise2010 result provided by SPEC.

Traditionally, hardware resources are a customer's obligation. In that case,
EjOPS metric can help software vendors to suggest hardware speci�cation to be
acquired. But if one deploys software through a cloud model, the hardware will
probably be in an abstraction layer which is not visible at the customer point of
view. Furthermore, the amount spent on these resources will likely to be paid by
the software vendor. In this situation, the EjOPS metric itself makes no sense
if there is no related price. The parameters required to evaluate a pay-as-you-go

cloud platform should be di�erent than ones currently used by SPEC. As shown
in Fig. 5, SPEC results include hardware and software speci�cation. That is
not relevant in a cloud platform evaluation, which should present something like
�how much it will be spent to run a speci�c workload�. There is also another per-
spective to be considered: benchmark metrics are generally related to processing
power and, in pay-as-you-go cloud model, there are other billable items such as
total storage used, input and output data transfer. Those items should also be
covered by a cloud platform benchmark.

CloudCMP is one of the �rst e�orts in developing a new cloud benchmark
suite [13]. The �rst CloudCmp results were published in 2010 at the Conference
on Internet Measurement in Australia and the benchmark was publicly released
in November, 2011 [14]. CloudCmp published data covers some of major cloud
vendor such as Amazon, Microsoft, Google and Rackspace. Even not addressing
only platforms 1, as expected for such research on cloud evaluation, the metrics

1 OnlyGoogle AppEngine is really a cloud platform (PaaS). The other ones are most
like IaaS.



Pay-as-you-go cloud platforms: impact on software pricing and development 9

initially proposed by CloudCmp adhere to the new scenario we describe in the
present paper. CloudCmp compares items like benchmark �nishing time vs. cost
or scaling latency vs. cost, which are closely connected to what would be neces-
sary to choose a cloud platform vendor. But, as the paper itself warns, there is
still a lot of work to do. Some of the future work is to build performance predic-
tion models based on CloudCmp's results to enable cloud provider selection for
arbitrary apps. That could be used at the beginning of the software development
process as a strategy to estimate the amount to be paid to platform vendor.

4 Case study: SIE ERP system

To study how the changes highlighted in Section 3 could interfere in the outcome
of the software development process, we carried out a case study using an ERP
system named SIE. This system is targeted to academic institutions and is cur-
rently deployed in more than 20 Brazilian universities. SIE development started
in mid 1999, using Borland Delphi and a multi-tier architecture where the busi-
ness rules are processed via RPC calls in one or more centralized application
servers [1]. The whole ERP has around 2.500 tables accessed by more than 4.000
applications that work seamlessly to manage di�erent business functions such as
academic and student management, contract and inventory management, human
resources, �nance/accounting, etc.

The speci�c purpose of our study is to check whether and how a software
developed without concern on rational resource consumption can generate wastes
that, in a pay-as-you-go cloud platform, will directly impact the software vendor
pro�t.

4.1 Case study setup

The ideal scenario to perform measurements over a pay-as-you-go platform would
require that SIE was hosted on a cloud platform. This scenario, however, is not
feasible within the scope of this work, because the actual system would need to be
developed with the architecture and/or programming language of the platform.

As that scenario is unfeasible, we chose to monitor actual usage of SIE in
one institution (Universidade Federal de Santa Maria � UFSM), using its pro-
duction environment. This approach allows us to collect fairly comprehensive
information, since the SIE ERP is widely used in UFSM.

The measurement of e�ectively consumed resources should track all the bil-
lable items of a pay-as-you-go platform. Monitoring at this level of detail would
not be feasible within the scope of this work, so we chose to monitor the response
time of each system feature. Then we consider this response time as an indica-
tion of resource consumption as follows: the longer response time of a feature,
the greater the amount of resources it consumed.

In an ERP like SIE, the response time can be a�ected by issues such as:
CPU usage on the application server; the amount of data transferred between
the server and client side; the system's CPU and disk usage on the database



10 Pay-as-you-go cloud platforms: impact on software pricing and development

server; and the volume of information stored at database along with the required
indexes. Although these aspects may keep some similarity with pay-as-you-go

billed items, measuring the response time is not a substitute for complete detailed
resource monitoring. However, for the purpose of this study, the response time

can be used without major losses.

4.2 Measurement and analysis

To perform the measurements and collect data, we modi�ed SIE's source code
to log any RPC call made to the server layer. The log contains, among other
information, the name of the RPC method called and the time each call took to
be processed. The change was applied to the UFSM's production environment 2

and kept alive for a 20 minutes period. This time was enough to collect data on
more than 35.000 RPC calls, made by a total of 58 users, who used 62 di�erent
system applications, resulting in calls to 602 di�erent RPC methods. With that
log data, it was possible to obtain information as shown in Fig. 6, which lists
some of the SIE RPC methods and its response time. Taking a look at that list,
one observes that the method named IConsultaLocal.ConsultaAcervoBib has a
considerable total response time (385.336msec) and it was called 90 times during
the monitoring period. Similarly, the method named ISGCA.GetRotulo got 6.252
calls and a total response time of 71.225 msec.

Fig. 6. Log results obtained for SIE'S RPC.

We analyzed the log data aiming to �nd optimization opportunities that, for
some reason, has been disregarded since the beginnings of the software devel-
opment (more than 10 years ago) and that may impact the total consumption
of system resources. The results showed situations as presented in Fig. 7, which
lists the 10 RPC methods with higher total response time. The proportions of
the 10 methods (in a total of 602 monitored) in relation to the whole system
total response time logged reaches 51.39%.

An analysis of the source code of these method showed situations such as the
one of method IConsultaLocal.ConsultaAcervoBib, whose optimization would be
complex since it has too much possible combinations of parameters and database
queries. On the other hand, it also pointed out situations such as the one found on

2 The infrastructure of computers where systems are hosted at UFSM and are accessed
by its employees and students.



Pay-as-you-go cloud platforms: impact on software pricing and development 11

Fig. 7. SIE RPC methods with higher total response time (20 min. monitoring).

method ISGCA.GetRotulo, which could be optimized by implementing a cache
system. An analysis of the whole log data pointed out at least another six meth-
ods that could be optimized by a cache implementation. Fig. 8 summarizes that.

Fig. 8. Sample of optimization opportunities found in SIE RPC methods.

A previous study suggests that using a cache strategy within the AppEngine
platform could be up to 20 times cheaper than using direct access to database
[2]. Relying on the connection between response time and resource consumption,
if we just use a simple cache implementation to optimize these seven methods
we could reduce their total response time from 346,536 to 17,326 msec. The
total response time measured for the whole system during the 20 minutes of
monitoring was 2,010,011 msec. So it would represent a reduction of 16.38%.
This value of 16.38% represents the savings that the software vendor would have
with these optimizations if it was using a pay-as-you-go cloud platform.



12 Pay-as-you-go cloud platforms: impact on software pricing and development

4.3 Discussion

The relationship between response time and resources consumption is not fully
accurate and the numbers presented in this section cannot be considered de�ni-
tive. However, it became more evident that a system developed with traditional
methods (like SIE ERP was) and without concern for the rational resource con-
sumption can generate wastings that will impact on software vendor pro�t if the
software is deployed over a pay-as-you-go cloud platform. The case study points
out that the aspects presented in section 3 are really a�ected by pay-as-you-go

cloud platform and it will be necessary to revise some of them. In COCOMO II
it would be very useful to revise the cost drivers related to platform factor. In
benchmarking tools, there is a lot of work ahead to meet the new needs related
to pay-as-you-go model. CloudCmp has begun a good work on that but it will be
necessary developing more benchmark suites, similarly to the traditional bench-
marks from SPEC. ISO/IEC 25010 and requirements engineering, on other hand,
may deserve some minor adjustments in the software requirements process to ad-
dress concern for rational resource usage. All of these changes are summarized
in Fig. 9.

Fig. 9. Summary of changes due to pay-as-you-go cloud platform



Pay-as-you-go cloud platforms: impact on software pricing and development 13

With these changes in mind, we provide in Fig. 10 a schema that can sup-
port further studies that aim to adapt software development process to the new
scenario. The presented schema is far way from a model proposal. It merely illus-
trates the idea of identify the expected usage degree of each feature while taking
details about that feature and then estimate the amount of resources that will
be consumed to decide if it is signi�cant enough to be designed with the max-
imum optimization possible. This might support the pricing strategy, since the
software price must be huge enough to cover all costs of hardware and generate
a satisfactory pro�t margin.

Fig. 10. Draft schema to software requirement development process in a pay-as-you-go
cloud platform

5 Conclusion

Pay-as-you-go cloud platforms represent a new challenge to software developers:
they will need to address the hardware resources in a di�erent way than they are
used to. This change is related to the fact that, in these platforms, the hardware
consumed by the application usage can directly impact software vendor pro�t.
This reality leads to an approach based on rational resource consumption, which
is not the focus of traditional software development.

Not all models and tools currently used in software development are ready to
deal with this approach based on rational use of resources. The analysis presented
in this paper has pointed out the need to review models such as COCOMO II, as
well as processes related to requirements engineering. We also identi�ed the need
to review benchmark suites and algorithms, such as those provided by SPEC.

The case study showed that software systems developed without concern for
the rational resource consumption (as ERP SIE) can lead to resource wastes that
will impact on software vendor pro�t if the software would be hosted on a pay

as-you-go cloud platform. There is still much work to be done in this area and
this paper aims to contribute to raise the problems related to rational resource



14 Pay-as-you-go cloud platforms: impact on software pricing and development

consumption. Further studies may include reviewing other aspects that deserve
attention and were not addressed by this work, such as the use of pay-as-you-go
platform during the software development itself and some pricing issues related
to adding new features to existing software in that scenario.

References

1. Barbosa, F.P.: Projeto e implementação de um framework para desenvolvimento
de aplicações em três camadas. Tech. rep., Curso de Ciência da Computação. Uni-
versidade Federal de Santa Maria., Santa Maria (2000)

2. Barbosa, F.P., Charão, A.: Uma análise do impacto das plataformas pay-as-you-go
de computação em nuvem no desenvolvimento e preci�cação de software. In: Pro-
ceedings of the XXXVII Latin American Informatics Conference (XXXVII CLEI)
(2011)

3. Boehm, B., Valerdi, R.: Achievements and challenges in Cocomo-based software
resource estimation. Software, IEEE 25(5), 74 �83 (sept-oct 2008)

4. Bohem, D.: COCOMO II - model de�nition manual, version 1.4. Tech. rep., USA
(2000), http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf

5. Dakin, K.: Establishing a fair price for software. Software, IEEE 12(6), 105 �106
(nov 1995)

6. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. In: Grid Computing Environments Workshop, 2008. GCE '08.
pp. 1 �10 (nov 2008)

7. Giladi, R., Ahitav, N.: SPEC as a performance evaluation measure. Computer
28(8), 33 �42 (aug 1995)

8. Guha, R., Al-Dabass, D.: Impact of web 2.0 and cloud computing platform on soft-
ware engineering. In: Electronic System Design (ISED), 2010 International Sym-
posium on. pp. 213 �218 (dec 2010)

9. Hamid R Motahari-Nezhad, Bryan Stephenson, S.S.: Outsourcing business to cloud
computing services: Opportunities and challenges. Tech. rep., USA (February
2009), http://www.hpl.hp.com/techreports/2009/HPL-2009-23.pdf

10. Harmon, R., Ra�o, D., Faulk, S.: Incorporating price sensitivity measurement into
the software engineering process. In: Portland International Conference on Manage-
ment of Engineering and Technology, 2003. PICMET '03. Technology Management
for Reshaping the World. pp. 316 � 323 (july 2003)

11. ISO: ISO/IEC 25010. Systems and software engineering � Systems and software
Quality Requirements and Evaluation (SQuaRE). ISO (2011)

12. Kamdar, A., Orsoni, A.: Development of value-based pricing model for software
services. In: 11th International Conference on Computer Modelling and Simulation,
2009. UKSIM '09. pp. 299 �304 (march 2009)

13. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th annual conference on Internet measurement.
pp. 1�14. IMC '10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.
1145/1879141.1879143

14. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp - pitting cloud against cloud.
http://cloudcmp.net/download (2011)

15. Pandey, D., Suman, U., Ramani, A.: An e�ective requirement engineering process
model for software development and requirements management. In: International
Conference on Advances in Recent Technologies in Communication and Computing
(ARTCom), 2010. pp. 287 �291 (oct 2010)



Pay-as-you-go cloud platforms: impact on software pricing and development 15

16. Qin, W., Ru-xiang, W.: Research of military software pricing based on binomial
tree method. In: 3rd IEEE International Conference on Computer Science and
Information Technology (ICCSIT), 2010. vol. 9, pp. 628 �632 (july 2010)

17. SEI/PSM: Software quality requirements and evaluation, the
ISO 25000 series. http://www.psmsc.com/Downloads/TWGFeb04/

04ZubrowISO25000SWQualityMeasurement.pdf (2004)
18. SPEC: Standard performance evaluation corporation. http://www.spec.org/

(2011)
19. Zheng, Y., Cao, R., Sun, W., Zhang, K., Jiang, Z.: Practical application of FDC

in software service pricing. In: IEEE International Conference on e-Business Engi-
neering, 2006. ICEBE '06. pp. 352 �357 (oct 2006)


